readme
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# I-BERT base model
|
2 |
+
|
3 |
+
This model, `ibert-roberta-base`, is an integer-only quantized version of [RoBERTa](https://arxiv.org/abs/1907.11692), and was introduced in [this papaer](https://arxiv.org/abs/2101.01321).
|
4 |
+
I-BERT stores all parameters with INT8 representation, and carries out the entire inference using integer-only arithmetic.
|
5 |
+
In particular, I-BERT replaces all floating point operations in the Transformer architectures (e.g., MatMul, GELU, Softmax, and LayerNorm) with closely approximating integer operations.
|
6 |
+
This can result in upto 4x inference speed up as compared to floating point counterpart when tested on an Nvidia T4 GPU.
|
7 |
+
The best model parameters searched via quantization-aware finetuning can be then exported (e.g., to TensorRT) for integer-only deployment of the model.
|
8 |
+
|
9 |
+
|
10 |
+
## Finetuning Procedure
|
11 |
+
|
12 |
+
Finetuning of I-BERT consists of 3 stages: (1) Full-precision finetuning from the pretrained model on a down-stream task, (2) model quantization, and (3) integer-only finetuning (i.e., quantization-aware training) of the quantized model.
|
13 |
+
|
14 |
+
|
15 |
+
### Full-precision finetuning
|
16 |
+
|
17 |
+
Full-precision finetuning of I-BERT is similar to RoBERTa finetuning.
|
18 |
+
For instance, you can run the following command to finetune on the [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398) text classification task.
|
19 |
+
|
20 |
+
```
|
21 |
+
python examples/text-classification/run_glue.py \
|
22 |
+
--model_name_or_path kssteven/ibert-roberta-base \
|
23 |
+
--task_name MRPC \
|
24 |
+
--do_eval \
|
25 |
+
--do_train \
|
26 |
+
--evaluation_strategy epoch \
|
27 |
+
--max_seq_length 128 \
|
28 |
+
--per_device_train_batch_size 32 \
|
29 |
+
--save_steps 115 \
|
30 |
+
--learning_rate 2e-5 \
|
31 |
+
--num_train_epochs 10 \
|
32 |
+
--output_dir $OUTPUT_DIR
|
33 |
+
```
|
34 |
+
|
35 |
+
### Model Quantization
|
36 |
+
|
37 |
+
Once you are done with full-precision finetuning, open up `config.json` in your checkpoint directory and set the `quantize` attribute as `true`.
|
38 |
+
|
39 |
+
```
|
40 |
+
{
|
41 |
+
"_name_or_path": "kssteven/ibert-roberta-base",
|
42 |
+
"architectures": [
|
43 |
+
"IBertForSequenceClassification"
|
44 |
+
],
|
45 |
+
"attention_probs_dropout_prob": 0.1,
|
46 |
+
"bos_token_id": 0,
|
47 |
+
"eos_token_id": 2,
|
48 |
+
"finetuning_task": "mrpc",
|
49 |
+
"force_dequant": "none",
|
50 |
+
"hidden_act": "gelu",
|
51 |
+
"hidden_dropout_prob": 0.1,
|
52 |
+
"hidden_size": 768,
|
53 |
+
"initializer_range": 0.02,
|
54 |
+
"intermediate_size": 3072,
|
55 |
+
"layer_norm_eps": 1e-05,
|
56 |
+
"max_position_embeddings": 514,
|
57 |
+
"model_type": "ibert",
|
58 |
+
"num_attention_heads": 12,
|
59 |
+
"num_hidden_layers": 12,
|
60 |
+
"pad_token_id": 1,
|
61 |
+
"position_embedding_type": "absolute",
|
62 |
+
"quant_mode": true,
|
63 |
+
"tokenizer_class": "RobertaTokenizer",
|
64 |
+
"transformers_version": "4.4.0.dev0",
|
65 |
+
"type_vocab_size": 1,
|
66 |
+
"vocab_size": 50265
|
67 |
+
}
|
68 |
+
```
|
69 |
+
|
70 |
+
Then, your model will automatically run as the integer-only mode when you load the checkpoint.
|
71 |
+
Also, make sure to delete `optimizer.pt`, `scheduler.pt` and `trainer_state.json` in the same directory.
|
72 |
+
Otherwise, HF will not reset the optimizer, scheduler, or trainer state for the following integer-only finetuning.
|
73 |
+
|
74 |
+
|
75 |
+
### Integer-only finetuning (Quantization-aware training)
|
76 |
+
|
77 |
+
Finally, you will be able to run integer-only finetuning simply by loading the checkpoint file you modified.
|
78 |
+
Note that the only difference in the example command below is `model_name_or_path`.
|
79 |
+
|
80 |
+
python examples/text-classification/run_glue.py \
|
81 |
+
--model_name_or_path $CHECKPOINT_DIR
|
82 |
+
--task_name MRPC \
|
83 |
+
--do_eval \
|
84 |
+
--do_train \
|
85 |
+
--evaluation_strategy epoch \
|
86 |
+
--max_seq_length 128 \
|
87 |
+
--per_device_train_batch_size 32 \
|
88 |
+
--save_steps 115 \
|
89 |
+
--learning_rate 1e-6 \
|
90 |
+
--num_train_epochs 10 \
|
91 |
+
--output_dir $OUTPUT_DIR
|
92 |
+
|
93 |
+
|
94 |
+
## Citation info
|
95 |
+
|
96 |
+
If you use I-BERT, please cite [our papaer](https://arxiv.org/abs/2101.01321).
|
97 |
+
```
|
98 |
+
@article{kim2021bert,
|
99 |
+
title={I-BERT: Integer-only BERT Quantization},
|
100 |
+
author={Kim, Sehoon and Gholami, Amir and Yao, Zhewei and Mahoney, Michael W and Keutzer, Kurt},
|
101 |
+
journal={arXiv preprint arXiv:2101.01321},
|
102 |
+
year={2021}
|
103 |
+
}
|