Singh commited on
Commit
20a3a70
·
verified ·
1 Parent(s): 614e8fd

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,526 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/stsb-xlm-r-multilingual
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:193860
24
+ - loss:MultipleNegativesRankingLoss
25
+ widget:
26
+ - source_sentence: ഓ, അതെ, ഞാൻ അവരെ കഴുത്ത് ഞെരിച്ച് കൊല്ലുമായിരുന്നു എന്ന ചിന്തയെക്കുറിച്ച്
27
+ വായിച്ചത് ഞാൻ ഓർക്കുന്നു.
28
+ sentences:
29
+ - A major privacy related disaster might be an exception.
30
+ - আমি এটি সম্পর্কে পড়েছি এবং ভেবেছিলাম যে আমাকে তাদের শ্বাসরোধ করতে হবে।
31
+ - How do you like it out there?
32
+ - source_sentence: A male tennis player hits a tennis ball at a tennis match.
33
+ sentences:
34
+ - You can shower outside in nature with privacy.
35
+ - രണ്ട് കാറുകൾ ഓടുന്നു.
36
+ - একজন লোক টেনিস খেলছে।
37
+ - source_sentence: ఒక గోధుమ మరియు తెలుపు కుక్క ఒక ఇంటి ప్రాంగణంలో ఆడుతోంది.
38
+ sentences:
39
+ - आँगन में एक कुत्ता खेल रहा है।
40
+ - तालप्रिय ग्वाडेलोपियन पर्यटकांच्या संख्येपेक्षा जास्त असतील.
41
+ - সবুজ পোশাকে কিছু মানুষ
42
+ - source_sentence: A baby wearing a pink outfit with flowers on it has its mouth open.
43
+ sentences:
44
+ - बैठकीच्या खोलीच्या भिंती पांढऱ्या आहेत.
45
+ - a baby is in a pink outfit
46
+ - এটা ভালো হবে, কিন্তু আমি স্বাধীনতা উপভোগ করি।
47
+ - source_sentence: A baby wearing a watch.
48
+ sentences:
49
+ - એક બાળક ઘડિયાળ પહેરી રહ્યું છે.
50
+ - एक बेसबॉल खिलाड़ी गेंद पर झूलता है।
51
+ - The mans legs are touching.
52
+ model-index:
53
+ - name: SentenceTransformer based on sentence-transformers/stsb-xlm-r-multilingual
54
+ results:
55
+ - task:
56
+ type: semantic-similarity
57
+ name: Semantic Similarity
58
+ dataset:
59
+ name: sts dev
60
+ type: sts-dev
61
+ metrics:
62
+ - type: pearson_cosine
63
+ value: 0.8658165968626415
64
+ name: Pearson Cosine
65
+ - type: spearman_cosine
66
+ value: 0.8714077275778997
67
+ name: Spearman Cosine
68
+ - type: pearson_manhattan
69
+ value: 0.8695576458225691
70
+ name: Pearson Manhattan
71
+ - type: spearman_manhattan
72
+ value: 0.8700925845327402
73
+ name: Spearman Manhattan
74
+ - type: pearson_euclidean
75
+ value: 0.8694747813672388
76
+ name: Pearson Euclidean
77
+ - type: spearman_euclidean
78
+ value: 0.8703633875862249
79
+ name: Spearman Euclidean
80
+ - type: pearson_dot
81
+ value: 0.7735824081876905
82
+ name: Pearson Dot
83
+ - type: spearman_dot
84
+ value: 0.7728637057026586
85
+ name: Spearman Dot
86
+ - type: pearson_max
87
+ value: 0.8695576458225691
88
+ name: Pearson Max
89
+ - type: spearman_max
90
+ value: 0.8714077275778997
91
+ name: Spearman Max
92
+ - task:
93
+ type: semantic-similarity
94
+ name: Semantic Similarity
95
+ dataset:
96
+ name: sts test
97
+ type: sts-test
98
+ metrics:
99
+ - type: pearson_cosine
100
+ value: 0.8413454674808685
101
+ name: Pearson Cosine
102
+ - type: spearman_cosine
103
+ value: 0.8516557437790466
104
+ name: Spearman Cosine
105
+ - type: pearson_manhattan
106
+ value: 0.8406890199541754
107
+ name: Pearson Manhattan
108
+ - type: spearman_manhattan
109
+ value: 0.8401478064056196
110
+ name: Spearman Manhattan
111
+ - type: pearson_euclidean
112
+ value: 0.8405040750844844
113
+ name: Pearson Euclidean
114
+ - type: spearman_euclidean
115
+ value: 0.8402979769379469
116
+ name: Spearman Euclidean
117
+ - type: pearson_dot
118
+ value: 0.7261415217517116
119
+ name: Pearson Dot
120
+ - type: spearman_dot
121
+ value: 0.7095416925344771
122
+ name: Spearman Dot
123
+ - type: pearson_max
124
+ value: 0.8413454674808685
125
+ name: Pearson Max
126
+ - type: spearman_max
127
+ value: 0.8516557437790466
128
+ name: Spearman Max
129
+ ---
130
+
131
+ # SentenceTransformer based on sentence-transformers/stsb-xlm-r-multilingual
132
+
133
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-xlm-r-multilingual](https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
134
+
135
+ ## Model Details
136
+
137
+ ### Model Description
138
+ - **Model Type:** Sentence Transformer
139
+ - **Base model:** [sentence-transformers/stsb-xlm-r-multilingual](https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual) <!-- at revision e33c331c9f771a2d5ee0b434a970d22281e3fc3e -->
140
+ - **Maximum Sequence Length:** 128 tokens
141
+ - **Output Dimensionality:** 768 tokens
142
+ - **Similarity Function:** Cosine Similarity
143
+ <!-- - **Training Dataset:** Unknown -->
144
+ <!-- - **Language:** Unknown -->
145
+ <!-- - **License:** Unknown -->
146
+
147
+ ### Model Sources
148
+
149
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
150
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
151
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
152
+
153
+ ### Full Model Architecture
154
+
155
+ ```
156
+ SentenceTransformer(
157
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
158
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
159
+ )
160
+ ```
161
+
162
+ ## Usage
163
+
164
+ ### Direct Usage (Sentence Transformers)
165
+
166
+ First install the Sentence Transformers library:
167
+
168
+ ```bash
169
+ pip install -U sentence-transformers
170
+ ```
171
+
172
+ Then you can load this model and run inference.
173
+ ```python
174
+ from sentence_transformers import SentenceTransformer
175
+
176
+ # Download from the 🤗 Hub
177
+ model = SentenceTransformer("sentence_transformers_model_id")
178
+ # Run inference
179
+ sentences = [
180
+ 'A baby wearing a watch.',
181
+ 'એક બાળક ઘડિયાળ પહેરી રહ્યું છે.',
182
+ 'The mans legs are touching.',
183
+ ]
184
+ embeddings = model.encode(sentences)
185
+ print(embeddings.shape)
186
+ # [3, 768]
187
+
188
+ # Get the similarity scores for the embeddings
189
+ similarities = model.similarity(embeddings, embeddings)
190
+ print(similarities.shape)
191
+ # [3, 3]
192
+ ```
193
+
194
+ <!--
195
+ ### Direct Usage (Transformers)
196
+
197
+ <details><summary>Click to see the direct usage in Transformers</summary>
198
+
199
+ </details>
200
+ -->
201
+
202
+ <!--
203
+ ### Downstream Usage (Sentence Transformers)
204
+
205
+ You can finetune this model on your own dataset.
206
+
207
+ <details><summary>Click to expand</summary>
208
+
209
+ </details>
210
+ -->
211
+
212
+ <!--
213
+ ### Out-of-Scope Use
214
+
215
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
216
+ -->
217
+
218
+ ## Evaluation
219
+
220
+ ### Metrics
221
+
222
+ #### Semantic Similarity
223
+ * Dataset: `sts-dev`
224
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
225
+
226
+ | Metric | Value |
227
+ |:--------------------|:-----------|
228
+ | pearson_cosine | 0.8658 |
229
+ | **spearman_cosine** | **0.8714** |
230
+ | pearson_manhattan | 0.8696 |
231
+ | spearman_manhattan | 0.8701 |
232
+ | pearson_euclidean | 0.8695 |
233
+ | spearman_euclidean | 0.8704 |
234
+ | pearson_dot | 0.7736 |
235
+ | spearman_dot | 0.7729 |
236
+ | pearson_max | 0.8696 |
237
+ | spearman_max | 0.8714 |
238
+
239
+ #### Semantic Similarity
240
+ * Dataset: `sts-test`
241
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
242
+
243
+ | Metric | Value |
244
+ |:--------------------|:-----------|
245
+ | pearson_cosine | 0.8413 |
246
+ | **spearman_cosine** | **0.8517** |
247
+ | pearson_manhattan | 0.8407 |
248
+ | spearman_manhattan | 0.8401 |
249
+ | pearson_euclidean | 0.8405 |
250
+ | spearman_euclidean | 0.8403 |
251
+ | pearson_dot | 0.7261 |
252
+ | spearman_dot | 0.7095 |
253
+ | pearson_max | 0.8413 |
254
+ | spearman_max | 0.8517 |
255
+
256
+ <!--
257
+ ## Bias, Risks and Limitations
258
+
259
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
260
+ -->
261
+
262
+ <!--
263
+ ### Recommendations
264
+
265
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
266
+ -->
267
+
268
+ ## Training Details
269
+
270
+ ### Training Dataset
271
+
272
+ #### Unnamed Dataset
273
+
274
+
275
+ * Size: 193,860 training samples
276
+ * Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
277
+ * Approximate statistics based on the first 1000 samples:
278
+ | | query | positive | negative |
279
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
280
+ | type | string | string | string |
281
+ | details | <ul><li>min: 4 tokens</li><li>mean: 26.96 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.19 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.86 tokens</li><li>max: 60 tokens</li></ul> |
282
+ * Samples:
283
+ | query | positive | negative |
284
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------|
285
+ | <code>Delos was not only an important religious center, but also a major meeting point for trade between East and West during the Hellenistic and Roman eras.</code> | <code>The East and West met at Delos to trade.</code> | <code>All of the buildings are open to visitors.</code> |
286
+ | <code>काळ्या रंगाचा शर्ट घातलेली एक स्त्री तिच्या उजवीकडे पाहते, तर तिच्या डाव्या बाजूला निळ्या रंगाची बनियान घातलेला एक माणूस काचेतून पाणी पितो.</code> | <code>કાળા શર્ટમાં મહિલા તેના લખાણ તરફ જોઈ રહી હતી જ્યારે તેની બાજુના સજ્જન તેની તરસ છીપાવી રહ્યા હતા.</code> | <code>Armies of Cathar heretics and Roman church battled near Albi la Rouge.</code> |
287
+ | <code>કોંક્રિટ પગથિયા પર બેઠેલા ધાબળામાં વીંટાળેલા નાના બાળક સાથેનું દંપતી</code> | <code>సంబంధంలో ఉన్న ఇద్దరు వ్యక్తులు ఒక బిడ్డతో కూర్చున్నారు.</code> | <code>যারা আইনি সহায়তা চাইছেন তাদের জন্য এনজেপি ইন্টারনেট ভিত্তিক সহায়তা এবং সহায়তা প্রদান করে।</code> |
288
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
289
+ ```json
290
+ {
291
+ "scale": 20.0,
292
+ "similarity_fct": "cos_sim"
293
+ }
294
+ ```
295
+
296
+ ### Evaluation Dataset
297
+
298
+ #### Unnamed Dataset
299
+
300
+
301
+ * Size: 48,465 evaluation samples
302
+ * Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
303
+ * Approximate statistics based on the first 1000 samples:
304
+ | | query | positive | negative |
305
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
306
+ | type | string | string | string |
307
+ | details | <ul><li>min: 5 tokens</li><li>mean: 27.21 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.41 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.52 tokens</li><li>max: 61 tokens</li></ul> |
308
+ * Samples:
309
+ | query | positive | negative |
310
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------|:-------------------------------------------------------------|
311
+ | <code>काउबॉय टोपी और जींस पहने आदमी लकड़ी की इमारत के सामने खड़ा है।</code> | <code>लाकडी इमारतीसमोर उभा असलेला एक माणूस.</code> | <code>ஒரு சூட் அணிந்த ஒரு மனிதர் தெருவைக் கடக்கிறார்.</code> |
312
+ | <code>7 The Malcolm Baldridge National Quality Award and the President's Quality Award are given to organizations for their overall achievements in quality and performance.</code> | <code>ఒక సంస్థ బాగా పనిచేస్తే, వారికి రెండు అవార్డులు లభిస్తాయి.</code> | <code>விட்டிங்டன் ஒரு வண்டியில் சவாரி செய்தார்.</code> |
313
+ | <code>ఈ ఫుట్బాల్ జట్టు ఎరుపు చొక్కాలు మరియు ఎరుపు శిరస్త్రాణాలు ధరిస్తుంది.</code> | <code>তারা ফুটবল খেলছে।</code> | <code>एक आदमी मेट्रो में है।</code> |
314
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
315
+ ```json
316
+ {
317
+ "scale": 20.0,
318
+ "similarity_fct": "cos_sim"
319
+ }
320
+ ```
321
+
322
+ ### Training Hyperparameters
323
+ #### Non-Default Hyperparameters
324
+
325
+ - `eval_strategy`: steps
326
+ - `per_device_train_batch_size`: 128
327
+ - `per_device_eval_batch_size`: 128
328
+ - `num_train_epochs`: 1
329
+ - `warmup_ratio`: 0.1
330
+ - `bf16`: True
331
+ - `batch_sampler`: no_duplicates
332
+
333
+ #### All Hyperparameters
334
+ <details><summary>Click to expand</summary>
335
+
336
+ - `overwrite_output_dir`: False
337
+ - `do_predict`: False
338
+ - `eval_strategy`: steps
339
+ - `prediction_loss_only`: True
340
+ - `per_device_train_batch_size`: 128
341
+ - `per_device_eval_batch_size`: 128
342
+ - `per_gpu_train_batch_size`: None
343
+ - `per_gpu_eval_batch_size`: None
344
+ - `gradient_accumulation_steps`: 1
345
+ - `eval_accumulation_steps`: None
346
+ - `torch_empty_cache_steps`: None
347
+ - `learning_rate`: 5e-05
348
+ - `weight_decay`: 0.0
349
+ - `adam_beta1`: 0.9
350
+ - `adam_beta2`: 0.999
351
+ - `adam_epsilon`: 1e-08
352
+ - `max_grad_norm`: 1.0
353
+ - `num_train_epochs`: 1
354
+ - `max_steps`: -1
355
+ - `lr_scheduler_type`: linear
356
+ - `lr_scheduler_kwargs`: {}
357
+ - `warmup_ratio`: 0.1
358
+ - `warmup_steps`: 0
359
+ - `log_level`: passive
360
+ - `log_level_replica`: warning
361
+ - `log_on_each_node`: True
362
+ - `logging_nan_inf_filter`: True
363
+ - `save_safetensors`: True
364
+ - `save_on_each_node`: False
365
+ - `save_only_model`: False
366
+ - `restore_callback_states_from_checkpoint`: False
367
+ - `no_cuda`: False
368
+ - `use_cpu`: False
369
+ - `use_mps_device`: False
370
+ - `seed`: 42
371
+ - `data_seed`: None
372
+ - `jit_mode_eval`: False
373
+ - `use_ipex`: False
374
+ - `bf16`: True
375
+ - `fp16`: False
376
+ - `fp16_opt_level`: O1
377
+ - `half_precision_backend`: auto
378
+ - `bf16_full_eval`: False
379
+ - `fp16_full_eval`: False
380
+ - `tf32`: None
381
+ - `local_rank`: 0
382
+ - `ddp_backend`: None
383
+ - `tpu_num_cores`: None
384
+ - `tpu_metrics_debug`: False
385
+ - `debug`: []
386
+ - `dataloader_drop_last`: False
387
+ - `dataloader_num_workers`: 0
388
+ - `dataloader_prefetch_factor`: None
389
+ - `past_index`: -1
390
+ - `disable_tqdm`: False
391
+ - `remove_unused_columns`: True
392
+ - `label_names`: None
393
+ - `load_best_model_at_end`: False
394
+ - `ignore_data_skip`: False
395
+ - `fsdp`: []
396
+ - `fsdp_min_num_params`: 0
397
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
398
+ - `fsdp_transformer_layer_cls_to_wrap`: None
399
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
400
+ - `deepspeed`: None
401
+ - `label_smoothing_factor`: 0.0
402
+ - `optim`: adamw_torch
403
+ - `optim_args`: None
404
+ - `adafactor`: False
405
+ - `group_by_length`: False
406
+ - `length_column_name`: length
407
+ - `ddp_find_unused_parameters`: None
408
+ - `ddp_bucket_cap_mb`: None
409
+ - `ddp_broadcast_buffers`: False
410
+ - `dataloader_pin_memory`: True
411
+ - `dataloader_persistent_workers`: False
412
+ - `skip_memory_metrics`: True
413
+ - `use_legacy_prediction_loop`: False
414
+ - `push_to_hub`: False
415
+ - `resume_from_checkpoint`: None
416
+ - `hub_model_id`: None
417
+ - `hub_strategy`: every_save
418
+ - `hub_private_repo`: False
419
+ - `hub_always_push`: False
420
+ - `gradient_checkpointing`: False
421
+ - `gradient_checkpointing_kwargs`: None
422
+ - `include_inputs_for_metrics`: False
423
+ - `eval_do_concat_batches`: True
424
+ - `fp16_backend`: auto
425
+ - `push_to_hub_model_id`: None
426
+ - `push_to_hub_organization`: None
427
+ - `mp_parameters`:
428
+ - `auto_find_batch_size`: False
429
+ - `full_determinism`: False
430
+ - `torchdynamo`: None
431
+ - `ray_scope`: last
432
+ - `ddp_timeout`: 1800
433
+ - `torch_compile`: False
434
+ - `torch_compile_backend`: None
435
+ - `torch_compile_mode`: None
436
+ - `dispatch_batches`: None
437
+ - `split_batches`: None
438
+ - `include_tokens_per_second`: False
439
+ - `include_num_input_tokens_seen`: False
440
+ - `neftune_noise_alpha`: None
441
+ - `optim_target_modules`: None
442
+ - `batch_eval_metrics`: False
443
+ - `eval_on_start`: False
444
+ - `eval_use_gather_object`: False
445
+ - `batch_sampler`: no_duplicates
446
+ - `multi_dataset_batch_sampler`: proportional
447
+
448
+ </details>
449
+
450
+ ### Training Logs
451
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
452
+ |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
453
+ | 0 | 0 | - | - | 0.8676 | - |
454
+ | 0.0660 | 50 | - | 1.6688 | 0.8638 | - |
455
+ | 0.1319 | 100 | 1.9732 | 1.2907 | 0.8670 | - |
456
+ | 0.1979 | 150 | - | 1.1554 | 0.8677 | - |
457
+ | 0.2639 | 200 | 1.266 | 1.0765 | 0.8671 | - |
458
+ | 0.3298 | 250 | - | 1.0252 | 0.8674 | - |
459
+ | 0.3958 | 300 | 1.1386 | 0.9857 | 0.8662 | - |
460
+ | 0.4617 | 350 | - | 0.9448 | 0.8680 | - |
461
+ | 0.5277 | 400 | 1.0391 | 0.9190 | 0.8700 | - |
462
+ | 0.5937 | 450 | - | 0.8990 | 0.8685 | - |
463
+ | 0.6596 | 500 | 0.9889 | 0.8792 | 0.8696 | - |
464
+ | 0.7256 | 550 | - | 0.8619 | 0.8719 | - |
465
+ | 0.7916 | 600 | 0.9574 | 0.8501 | 0.8724 | - |
466
+ | 0.8575 | 650 | - | 0.8415 | 0.8724 | - |
467
+ | 0.9235 | 700 | 0.9253 | 0.8345 | 0.8722 | - |
468
+ | 0.9894 | 750 | - | 0.8308 | 0.8714 | - |
469
+ | 1.0 | 758 | - | - | - | 0.8517 |
470
+
471
+
472
+ ### Framework Versions
473
+ - Python: 3.9.19
474
+ - Sentence Transformers: 3.0.1
475
+ - Transformers: 4.44.2
476
+ - PyTorch: 2.4.0+cu121
477
+ - Accelerate: 0.33.0
478
+ - Datasets: 2.21.0
479
+ - Tokenizers: 0.19.1
480
+
481
+ ## Citation
482
+
483
+ ### BibTeX
484
+
485
+ #### Sentence Transformers
486
+ ```bibtex
487
+ @inproceedings{reimers-2019-sentence-bert,
488
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
489
+ author = "Reimers, Nils and Gurevych, Iryna",
490
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
491
+ month = "11",
492
+ year = "2019",
493
+ publisher = "Association for Computational Linguistics",
494
+ url = "https://arxiv.org/abs/1908.10084",
495
+ }
496
+ ```
497
+
498
+ #### MultipleNegativesRankingLoss
499
+ ```bibtex
500
+ @misc{henderson2017efficient,
501
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
502
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
503
+ year={2017},
504
+ eprint={1705.00652},
505
+ archivePrefix={arXiv},
506
+ primaryClass={cs.CL}
507
+ }
508
+ ```
509
+
510
+ <!--
511
+ ## Glossary
512
+
513
+ *Clearly define terms in order to be accessible across audiences.*
514
+ -->
515
+
516
+ <!--
517
+ ## Model Card Authors
518
+
519
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
520
+ -->
521
+
522
+ <!--
523
+ ## Model Card Contact
524
+
525
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
526
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "model",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43bba0a5a6c43b90d271cbc12018da5e5999e8b1de3fd24f1af38c9cadfa43fd
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c2ccb33b55c4d157419a2105d6e033f7514c2baa6306471c56b86ab02787613
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "sp_model_kwargs": {},
58
+ "stride": 0,
59
+ "tokenizer_class": "XLMRobertaTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "<unk>"
63
+ }