krishnateja commited on
Commit
afce653
1 Parent(s): f94c5e6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +116 -0
README.md ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - openslr
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: wav2vec2-telugu_150
11
+ results:
12
+ - task:
13
+ name: Automatic Speech Recognition
14
+ type: automatic-speech-recognition
15
+ dataset:
16
+ name: openslr
17
+ type: openslr
18
+ config: SLR66
19
+ split: train
20
+ args: SLR66
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 0.2212659135736059
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # wav2vec2-telugu_150
31
+
32
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the openslr dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.3312
35
+ - Wer: 0.2213
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0003
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 2
59
+ - total_train_batch_size: 32
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 500
63
+ - num_epochs: 150
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
69
+ |:-------------:|:------:|:-----:|:---------------:|:------:|
70
+ | 6.096 | 3.84 | 400 | 0.5762 | 0.7029 |
71
+ | 0.427 | 7.69 | 800 | 0.3124 | 0.5148 |
72
+ | 0.208 | 11.54 | 1200 | 0.2994 | 0.4201 |
73
+ | 0.1506 | 15.38 | 1600 | 0.3106 | 0.3844 |
74
+ | 0.1223 | 19.23 | 2000 | 0.3080 | 0.3608 |
75
+ | 0.1094 | 23.08 | 2400 | 0.3206 | 0.3332 |
76
+ | 0.0949 | 26.92 | 2800 | 0.3085 | 0.3253 |
77
+ | 0.0802 | 30.77 | 3200 | 0.3076 | 0.3425 |
78
+ | 0.0713 | 34.61 | 3600 | 0.3280 | 0.3398 |
79
+ | 0.0687 | 38.46 | 4000 | 0.3042 | 0.3081 |
80
+ | 0.0613 | 42.31 | 4400 | 0.3227 | 0.3073 |
81
+ | 0.0548 | 46.15 | 4800 | 0.3152 | 0.3213 |
82
+ | 0.0508 | 50.0 | 5200 | 0.3259 | 0.3107 |
83
+ | 0.0455 | 53.84 | 5600 | 0.3046 | 0.2881 |
84
+ | 0.0427 | 57.69 | 6000 | 0.2779 | 0.3007 |
85
+ | 0.0391 | 61.54 | 6400 | 0.2996 | 0.2693 |
86
+ | 0.0388 | 65.38 | 6800 | 0.3016 | 0.2695 |
87
+ | 0.0339 | 69.23 | 7200 | 0.3225 | 0.2935 |
88
+ | 0.0312 | 73.08 | 7600 | 0.2907 | 0.2942 |
89
+ | 0.029 | 76.92 | 8000 | 0.3148 | 0.3029 |
90
+ | 0.0254 | 80.77 | 8400 | 0.3118 | 0.2996 |
91
+ | 0.0229 | 84.61 | 8800 | 0.3022 | 0.2993 |
92
+ | 0.0231 | 88.46 | 9200 | 0.3203 | 0.2465 |
93
+ | 0.019 | 92.31 | 9600 | 0.3223 | 0.2460 |
94
+ | 0.0173 | 96.15 | 10000 | 0.3178 | 0.2501 |
95
+ | 0.0168 | 100.0 | 10400 | 0.2937 | 0.2415 |
96
+ | 0.015 | 103.84 | 10800 | 0.3062 | 0.2415 |
97
+ | 0.014 | 107.69 | 11200 | 0.3104 | 0.2383 |
98
+ | 0.012 | 111.54 | 11600 | 0.3308 | 0.2408 |
99
+ | 0.0111 | 115.38 | 12000 | 0.3228 | 0.2335 |
100
+ | 0.01 | 119.23 | 12400 | 0.3228 | 0.2374 |
101
+ | 0.0096 | 123.08 | 12800 | 0.3241 | 0.2304 |
102
+ | 0.009 | 126.92 | 13200 | 0.3237 | 0.2295 |
103
+ | 0.0075 | 130.77 | 13600 | 0.3221 | 0.2261 |
104
+ | 0.0065 | 134.61 | 14000 | 0.3310 | 0.2277 |
105
+ | 0.0064 | 138.46 | 14400 | 0.3348 | 0.2266 |
106
+ | 0.0064 | 142.31 | 14800 | 0.3330 | 0.2229 |
107
+ | 0.0056 | 146.15 | 15200 | 0.3310 | 0.2229 |
108
+ | 0.0053 | 150.0 | 15600 | 0.3312 | 0.2213 |
109
+
110
+
111
+ ### Framework versions
112
+
113
+ - Transformers 4.24.0
114
+ - Pytorch 1.13.0+cu117
115
+ - Datasets 2.6.1
116
+ - Tokenizers 0.13.2