krishnareddy commited on
Commit
45d6571
1 Parent(s): 15ff367

End of training

Browse files
Files changed (2) hide show
  1. README.md +91 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - wnut_17
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: hello_token_classification_model
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: wnut_17
21
+ type: wnut_17
22
+ config: wnut_17
23
+ split: test
24
+ args: wnut_17
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.6046065259117083
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.2919369786839666
32
+ - name: F1
33
+ type: f1
34
+ value: 0.39375
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9407036894532085
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # hello_token_classification_model
44
+
45
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.2797
48
+ - Precision: 0.6046
49
+ - Recall: 0.2919
50
+ - F1: 0.3937
51
+ - Accuracy: 0.9407
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 2
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 213 | 0.2924 | 0.4855 | 0.2011 | 0.2844 | 0.9363 |
83
+ | No log | 2.0 | 426 | 0.2797 | 0.6046 | 0.2919 | 0.3937 | 0.9407 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.35.2
89
+ - Pytorch 2.1.1+cu121
90
+ - Datasets 2.15.0
91
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f44381acca56571407a7285f4d3aef0eb437158ad5654332151dab8fbb0ada71
3
  size 265503852
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eacf003d918e91f8ca5effb83bf520c746abf658533bbc6931bec7091c7410e5
3
  size 265503852