krishna3103 commited on
Commit
0baf78e
·
verified ·
1 Parent(s): 8369276

Upload 8 files

Browse files
Files changed (8) hide show
  1. LICENSE +201 -0
  2. README.md +2 -5
  3. generator.py +286 -0
  4. main.py +52 -0
  5. post_processor.py +113 -0
  6. processor.py +120 -0
  7. requirements.txt +24 -0
  8. scraper.py +103 -0
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,5 +1,2 @@
1
- ---
2
- license: apache-2.0
3
- datasets:
4
- - krishna3103/version1
5
- ---
 
1
+ # bloomington-guide
2
+ The repository consists of the code for creation of the dataset and training the small language models via model distillation.
 
 
 
generator.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import time
3
+ import logging
4
+ import re
5
+ from datetime import datetime
6
+ from typing import Dict, List, Tuple
7
+ import google.generativeai as genai
8
+ from tqdm import tqdm
9
+ import pandas as pd
10
+
11
+ from config import (
12
+ GEMINI_API_KEY, GEMINI_RATE_LIMIT, PAIRS_PER_PROMPT,
13
+ TARGET_QA_PAIRS, PROCESSED_DIR, FINAL_DIR, LOG_DIR
14
+ )
15
+
16
+ class QAPairGenerator:
17
+ def __init__(self):
18
+ # Configure Gemini
19
+ genai.configure(api_key=GEMINI_API_KEY)
20
+ self.model = genai.GenerativeModel('gemini-1.5-flash')
21
+
22
+ # Set up logging
23
+ log_file = LOG_DIR / f"generator_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
24
+ logging.basicConfig(
25
+ level=logging.INFO,
26
+ format='%(asctime)s - %(levelname)s - %(message)s',
27
+ filename=log_file
28
+ )
29
+
30
+ self.generated_pairs = []
31
+ self.failed_generations = []
32
+ self.total_pairs_generated = 0 # Add counter for total pairs
33
+
34
+ def _generate_qa_batch(self, content: str, category: str) -> List[Dict]:
35
+ """Generate a batch of QA pairs from content using regex parsing"""
36
+ prompt = f"""
37
+ Based on the following content about Bloomington, Indiana, generate {PAIRS_PER_PROMPT} different instruction-response pairs.
38
+ The content is related to the category: {category}
39
+
40
+ Focus on creating specific, practical questions that tourists might ask, with detailed, actionable responses.
41
+ Include relevant details like operating hours, costs, locations, and tips when applicable.
42
+
43
+ Format your response EXACTLY as a JSON array with each object containing "instruction", "response", and "category" fields.
44
+
45
+ Example format:
46
+ [
47
+ {{
48
+ "instruction": "What are the peak times to visit the Sample Gardens and how much does it cost?",
49
+ "response": "Sample Gardens is busiest during weekends and holidays. Admission is $10 for adults, $5 for children (5-12), and free for children under 5. To avoid crowds, visit on weekday mornings between 9-11am. Free parking is available.",
50
+ "category": "attractions"
51
+ }}
52
+ ]
53
+
54
+ Content: {content}
55
+ """
56
+
57
+ try:
58
+ response = self.model.generate_content(prompt)
59
+ response_text = response.text.strip()
60
+
61
+ # Try regex parsing first
62
+ try:
63
+ # Pattern to match the entire JSON array
64
+ array_pattern = r'\[\s*(\{[^]]*\})\s*(?:,\s*(\{[^]]*\})\s*)*\]'
65
+ array_match = re.search(array_pattern, response_text, re.DOTALL)
66
+
67
+ if array_match:
68
+ json_str = array_match.group(0)
69
+
70
+ # Additional regex to validate individual objects
71
+ object_pattern = r'\{\s*"instruction":\s*"([^"]*)",\s*"response":\s*"([^"]*)",\s*"category":\s*"([^"]*)"\s*\}'
72
+ objects = re.finditer(object_pattern, json_str)
73
+
74
+ valid_pairs = []
75
+ for obj_match in objects:
76
+ instruction = obj_match.group(1)
77
+ response = obj_match.group(2)
78
+ obj_category = obj_match.group(3)
79
+
80
+ # Validate lengths
81
+ if len(instruction) >= 20 and len(response) >= 50:
82
+ valid_pairs.append({
83
+ 'instruction': instruction,
84
+ 'response': response,
85
+ 'category': category # Use the passed category instead of the one in response
86
+ })
87
+ else:
88
+ logging.warning(f"Pair rejected due to length requirements: Q: {len(instruction)} chars, A: {len(response)} chars")
89
+
90
+ if valid_pairs:
91
+ return valid_pairs
92
+
93
+ logging.warning("Regex parsing failed, attempting JSON parsing as fallback")
94
+
95
+ except Exception as regex_error:
96
+ logging.warning(f"Regex parsing error: {str(regex_error)}")
97
+
98
+ # Fallback to JSON parsing
99
+ try:
100
+ # Find the first '[' and last ']' to extract JSON array
101
+ start_idx = response_text.find('[')
102
+ end_idx = response_text.rfind(']') + 1
103
+
104
+ if start_idx != -1 and end_idx > start_idx:
105
+ json_str = response_text[start_idx:end_idx]
106
+ pairs = json.loads(json_str)
107
+ else:
108
+ pairs = json.loads(response_text)
109
+
110
+ # Validate pairs
111
+ valid_pairs = []
112
+ for pair in pairs:
113
+ if (isinstance(pair, dict) and
114
+ 'instruction' in pair and
115
+ 'response' in pair and
116
+ isinstance(pair['instruction'], str) and
117
+ isinstance(pair['response'], str) and
118
+ len(pair['instruction']) >= 20 and
119
+ len(pair['response']) >= 50):
120
+
121
+ pair['category'] = category
122
+ valid_pairs.append(pair)
123
+ else:
124
+ logging.warning(f"Invalid pair structure or length: {pair}")
125
+
126
+ return valid_pairs
127
+
128
+ except json.JSONDecodeError as json_error:
129
+ logging.error(f"JSON parsing error: {str(json_error)}\nResponse text: {response_text}")
130
+ return []
131
+
132
+ except Exception as e:
133
+ logging.error(f"Error in QA pair generation: {str(e)}")
134
+ self.failed_generations.append({
135
+ 'content': content,
136
+ 'category': category,
137
+ 'error': str(e),
138
+ 'response_text': response_text if 'response_text' in locals() else None,
139
+ 'timestamp': datetime.now().isoformat()
140
+ })
141
+ return []
142
+
143
+ def generate_pairs_for_category(self, category: str) -> List[Dict]:
144
+ """Generate QA pairs for a specific category"""
145
+ input_file = PROCESSED_DIR / f"{category}_processed.json"
146
+
147
+ try:
148
+ with open(input_file, 'r') as f:
149
+ processed_data = json.load(f)
150
+ except Exception as e:
151
+ logging.error(f"Error loading {input_file}: {e}")
152
+ return []
153
+
154
+ category_pairs = []
155
+
156
+ # Calculate remaining pairs needed
157
+ remaining_pairs = TARGET_QA_PAIRS - self.total_pairs_generated
158
+
159
+ if remaining_pairs <= 0:
160
+ logging.info("Target number of QA pairs reached")
161
+ return []
162
+
163
+ for item in tqdm(processed_data, desc=f"Generating pairs for {category}"):
164
+ if self.total_pairs_generated >= TARGET_QA_PAIRS:
165
+ logging.info(f"Target of {TARGET_QA_PAIRS} pairs reached. Stopping generation.")
166
+ break
167
+
168
+ # Combine all available content
169
+ content = f"{item['title']} {item['snippet']}"
170
+ if 'additional_content' in item:
171
+ content += f" {item['additional_content']}"
172
+
173
+ pairs = self._generate_qa_batch(content, category)
174
+
175
+ # Only take as many pairs as needed
176
+ pairs_needed = min(len(pairs), TARGET_QA_PAIRS - self.total_pairs_generated)
177
+ valid_pairs = pairs[:pairs_needed]
178
+
179
+ category_pairs.extend(valid_pairs)
180
+ self.total_pairs_generated += len(valid_pairs)
181
+
182
+ logging.info(f"Progress: {self.total_pairs_generated}/{TARGET_QA_PAIRS} pairs")
183
+
184
+ if self.total_pairs_generated >= TARGET_QA_PAIRS:
185
+ break
186
+
187
+ time.sleep(60/GEMINI_RATE_LIMIT) # Respect rate limit
188
+
189
+ # Save category pairs
190
+ output_file = FINAL_DIR / f"{category}_qa_pairs.json"
191
+ with open(output_file, 'w') as f:
192
+ json.dump(category_pairs, f, indent=2)
193
+
194
+ return category_pairs
195
+
196
+ def generate_all_pairs(self) -> None:
197
+ """Generate QA pairs for all categories until target is reached"""
198
+ categories = [f.stem.replace('_processed', '')
199
+ for f in PROCESSED_DIR.glob('*_processed.json')]
200
+
201
+ all_pairs = []
202
+
203
+ # Keep generating pairs until we reach the target
204
+ while self.total_pairs_generated < TARGET_QA_PAIRS and categories:
205
+ for category in categories[:]: # Create a copy to modify safely
206
+ if self.total_pairs_generated >= TARGET_QA_PAIRS:
207
+ break
208
+
209
+ logging.info(f"Starting generation for category: {category}")
210
+ category_pairs = self.generate_pairs_for_category(category)
211
+
212
+ if not category_pairs: # If no more pairs can be generated for this category
213
+ categories.remove(category)
214
+ continue
215
+
216
+ all_pairs.extend(category_pairs)
217
+ logging.info(f"Generated {len(category_pairs)} pairs for {category}")
218
+ self._save_progress(all_pairs)
219
+
220
+ if self.total_pairs_generated >= TARGET_QA_PAIRS:
221
+ break
222
+
223
+ # Check if we need to continue
224
+ if self.total_pairs_generated < TARGET_QA_PAIRS and not categories:
225
+ logging.warning(f"Exhausted all categories. Generated {self.total_pairs_generated}/{TARGET_QA_PAIRS} pairs")
226
+ break
227
+
228
+ # Save final results
229
+ self._save_final_results(all_pairs)
230
+
231
+ def _save_progress(self, pairs: List[Dict]) -> None:
232
+ """Save intermediate progress"""
233
+ timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
234
+ progress_file = FINAL_DIR / f"qa_pairs_progress_{timestamp}.json"
235
+
236
+ progress_data = {
237
+ 'pairs': pairs,
238
+ 'stats': {
239
+ 'total_pairs': len(pairs),
240
+ 'target_pairs': TARGET_QA_PAIRS,
241
+ 'completion_percentage': (self.total_pairs_generated / TARGET_QA_PAIRS) * 100,
242
+ 'pairs_per_category': pd.DataFrame(pairs)['category'].value_counts().to_dict(),
243
+ 'timestamp': timestamp
244
+ }
245
+ }
246
+
247
+ with open(progress_file, 'w') as f:
248
+ json.dump(progress_data, f, indent=2)
249
+
250
+ def _save_final_results(self, pairs: List[Dict]) -> None:
251
+ """Save final results and statistics"""
252
+ final_file = FINAL_DIR / "final_qa_pairs.json"
253
+
254
+ final_data = {
255
+ 'pairs': pairs,
256
+ 'stats': {
257
+ 'total_pairs_generated': self.total_pairs_generated,
258
+ 'target_pairs': TARGET_QA_PAIRS,
259
+ 'completion_percentage': (self.total_pairs_generated / TARGET_QA_PAIRS) * 100,
260
+ 'pairs_per_category': pd.DataFrame(pairs)['category'].value_counts().to_dict(),
261
+ 'avg_instruction_length': pd.DataFrame(pairs)['instruction'].str.len().mean(),
262
+ 'avg_response_length': pd.DataFrame(pairs)['response'].str.len().mean(),
263
+ 'failed_generations': len(self.failed_generations),
264
+ 'completion_timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
265
+ }
266
+ }
267
+
268
+ # Save main results
269
+ with open(final_file, 'w') as f:
270
+ json.dump(final_data, f, indent=2)
271
+
272
+ # Save as CSV
273
+ df = pd.DataFrame(pairs)
274
+ df.to_csv(FINAL_DIR / "final_qa_pairs.csv", index=False)
275
+
276
+ # Save failed generations for analysis
277
+ if self.failed_generations:
278
+ with open(FINAL_DIR / "failed_generations.json", 'w') as f:
279
+ json.dump(self.failed_generations, f, indent=2)
280
+
281
+ logging.info(f"""
282
+ Generation completed:
283
+ - Total pairs generated: {self.total_pairs_generated}
284
+ - Target pairs: {TARGET_QA_PAIRS}
285
+ - Categories used: {len(set(pair['category'] for pair in pairs))}
286
+ """)
main.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from datetime import datetime
3
+
4
+ from scraper import BloomingtonScraper
5
+ from processor import DataProcessor
6
+ from generator import QAPairGenerator
7
+ from config import LOG_DIR
8
+
9
+ def setup_logging() -> None:
10
+ """Set up logging configuration"""
11
+ log_file = LOG_DIR / f"main_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
12
+ logging.basicConfig(
13
+ level=logging.INFO,
14
+ format='%(asctime)s - %(levelname)s - %(message)s',
15
+ handlers=[
16
+ logging.FileHandler(log_file),
17
+ logging.StreamHandler() # Also print to console
18
+ ]
19
+ )
20
+
21
+ def main():
22
+ setup_logging()
23
+ logging.info("Starting Bloomington Tourist Guide data collection and QA pair generation")
24
+
25
+ try:
26
+ # Step 1: Data Collection
27
+ logging.info("Starting data collection...")
28
+ scraper = BloomingtonScraper()
29
+ scraper.scrape_all_categories()
30
+ search_stats = scraper.get_search_stats()
31
+ logging.info(f"Data collection completed. Search stats: {search_stats}")
32
+
33
+ # Step 2: Data Processing
34
+ logging.info("Starting data processing...")
35
+ processor = DataProcessor()
36
+ processor.process_all_categories()
37
+ logging.info("Data processing completed")
38
+
39
+ # Step 3: QA Pair Generation
40
+ logging.info("Starting QA pair generation...")
41
+ generator = QAPairGenerator()
42
+ generator.generate_all_pairs()
43
+ logging.info("QA pair generation completed")
44
+
45
+ except Exception as e:
46
+ logging.error(f"Error in main execution: {e}", exc_info=True)
47
+ raise
48
+
49
+ logging.info("Pipeline completed successfully")
50
+
51
+ if __name__ == "__main__":
52
+ main()
post_processor.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import pandas as pd
3
+ from pathlib import Path
4
+ from typing import List, Dict
5
+ import logging
6
+ from datetime import datetime
7
+
8
+ class DatasetConverter:
9
+ def __init__(self, input_file: str, output_dir: str):
10
+ """
11
+ Initialize the converter with input and output paths
12
+
13
+ Args:
14
+ input_file (str): Path to the input JSON file
15
+ output_dir (str): Directory to save the output files
16
+ """
17
+ self.input_file = Path(input_file)
18
+ self.output_dir = Path(output_dir)
19
+ self.output_dir.mkdir(parents=True, exist_ok=True)
20
+
21
+ # Set up logging
22
+ logging.basicConfig(
23
+ level=logging.INFO,
24
+ format='%(asctime)s - %(levelname)s - %(message)s'
25
+ )
26
+
27
+ def _format_message(self, instruction: str, response: str) -> List[Dict]:
28
+ """
29
+ Format a single instruction-response pair into the required message format
30
+
31
+ Args:
32
+ instruction (str): The user instruction/question
33
+ response (str): The assistant's response
34
+
35
+ Returns:
36
+ List[Dict]: Formatted message list
37
+ """
38
+ return [
39
+ {"content": instruction, "role": "user"},
40
+ {"content": response, "role": "assistant"}
41
+ ]
42
+
43
+ def convert(self) -> None:
44
+ """
45
+ Convert the input JSON file to HuggingFace dataset format
46
+ """
47
+ try:
48
+ # Read input JSON file
49
+ logging.info(f"Reading input file: {self.input_file}")
50
+ with open(self.input_file, 'r', encoding='utf-8') as f:
51
+ data = json.load(f)
52
+
53
+ # Extract QA pairs from the JSON structure
54
+ qa_pairs = data.get('pairs', []) # Handle both raw list and nested structure
55
+ if not qa_pairs and isinstance(data, list):
56
+ qa_pairs = data
57
+
58
+ logging.info(f"Found {len(qa_pairs)} QA pairs")
59
+
60
+ # Create dataset records
61
+ dataset_records = []
62
+ for idx, pair in enumerate(qa_pairs):
63
+ try:
64
+ messages = self._format_message(
65
+ pair['instruction'],
66
+ pair['response']
67
+ )
68
+
69
+ dataset_records.append({
70
+ 'id': f'bloomington_{idx:05d}',
71
+ 'messages': messages
72
+ })
73
+ except KeyError as e:
74
+ logging.warning(f"Skipping invalid pair at index {idx}: {e}")
75
+
76
+ # Convert to DataFrame
77
+ df = pd.DataFrame(dataset_records)
78
+
79
+ # Save as CSV and JSON
80
+ timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
81
+ csv_path = self.output_dir / f'bloomington_dataset_{timestamp}.csv'
82
+ json_path = self.output_dir / f'bloomington_dataset_{timestamp}.json'
83
+
84
+ df.to_csv(csv_path, index=False)
85
+ df.to_json(json_path, orient='records', indent=2)
86
+
87
+ logging.info(f"Successfully converted {len(dataset_records)} records")
88
+ logging.info(f"Saved dataset to:\n- CSV: {csv_path}\n- JSON: {json_path}")
89
+
90
+ # Generate and save dataset statistics
91
+ stats = {
92
+ 'total_records': len(dataset_records),
93
+ 'avg_instruction_length': sum(len(record['messages'][0]['content'])
94
+ for record in dataset_records) / len(dataset_records),
95
+ 'avg_response_length': sum(len(record['messages'][1]['content'])
96
+ for record in dataset_records) / len(dataset_records),
97
+ 'timestamp': timestamp
98
+ }
99
+
100
+ with open(self.output_dir / f'dataset_stats_{timestamp}.json', 'w') as f:
101
+ json.dump(stats, f, indent=2)
102
+
103
+ except Exception as e:
104
+ logging.error(f"Error converting dataset: {e}", exc_info=True)
105
+ raise
106
+
107
+ if __name__ == "__main__":
108
+ # Example usage
109
+ converter = DatasetConverter(
110
+ input_file="data/final/final_qa_pairs.json",
111
+ output_dir="data/huggingface"
112
+ )
113
+ converter.convert()
processor.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+ from datetime import datetime
4
+ from typing import Dict, List
5
+ import pandas as pd
6
+ from bs4 import BeautifulSoup
7
+ import requests
8
+ from urllib.parse import urlparse
9
+
10
+ from config import RAW_DIR, PROCESSED_DIR, LOG_DIR
11
+
12
+ class DataProcessor:
13
+ def __init__(self):
14
+ # Set up logging
15
+ log_file = LOG_DIR / f"processor_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
16
+ logging.basicConfig(
17
+ level=logging.INFO,
18
+ format='%(asctime)s - %(levelname)s - %(message)s',
19
+ filename=log_file
20
+ )
21
+
22
+ self.processed_data = {}
23
+
24
+ def _extract_domain(self, url: str) -> str:
25
+ """Extract domain from URL"""
26
+ try:
27
+ return urlparse(url).netloc
28
+ except Exception:
29
+ return ""
30
+
31
+ def _scrape_webpage(self, url: str) -> str:
32
+ """Scrape additional content from webpage"""
33
+ try:
34
+ headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
35
+ response = requests.get(url, headers=headers, timeout=10)
36
+ soup = BeautifulSoup(response.text, 'lxml')
37
+
38
+ # Remove unwanted elements
39
+ for element in soup(['script', 'style', 'nav', 'footer']):
40
+ element.decompose()
41
+
42
+ return ' '.join(soup.stripped_strings)
43
+ except Exception as e:
44
+ logging.error(f"Error scraping {url}: {e}")
45
+ return ""
46
+
47
+ def process_category(self, category: str) -> List[Dict]:
48
+ """Process data for a single category"""
49
+ input_file = RAW_DIR / f"{category}_results.json"
50
+
51
+ try:
52
+ with open(input_file, 'r') as f:
53
+ raw_results = json.load(f)
54
+ except Exception as e:
55
+ logging.error(f"Error loading {input_file}: {e}")
56
+ return []
57
+
58
+ processed_results = []
59
+
60
+ for result in raw_results:
61
+ processed_result = {
62
+ 'title': result.get('title', ''),
63
+ 'snippet': result.get('snippet', ''),
64
+ 'url': result.get('link', ''),
65
+ 'domain': self._extract_domain(result.get('link', '')),
66
+ 'category': category
67
+ }
68
+
69
+ # Add additional content for certain domains
70
+ if any(domain in processed_result['domain']
71
+ for domain in ['visitbloomington.com', 'indiana.edu', 'bloomington.in.gov']):
72
+ additional_content = self._scrape_webpage(processed_result['url'])
73
+ processed_result['additional_content'] = additional_content[:5000] # Limit content length
74
+
75
+ processed_results.append(processed_result)
76
+
77
+ # Save processed results
78
+ output_file = PROCESSED_DIR / f"{category}_processed.json"
79
+ with open(output_file, 'w') as f:
80
+ json.dump(processed_results, f, indent=2)
81
+
82
+ # Also save as CSV for easy viewing
83
+ df = pd.DataFrame(processed_results)
84
+ df.to_csv(PROCESSED_DIR / f"{category}_processed.csv", index=False)
85
+
86
+ self.processed_data[category] = processed_results
87
+ return processed_results
88
+
89
+ def process_all_categories(self) -> Dict[str, List[Dict]]:
90
+ """Process all categories"""
91
+ categories = [f.stem.replace('_results', '')
92
+ for f in RAW_DIR.glob('*_results.json')]
93
+
94
+ for category in categories:
95
+ logging.info(f"Processing category: {category}")
96
+ self.process_category(category)
97
+
98
+ # Save combined results
99
+ all_results = []
100
+ for category_results in self.processed_data.values():
101
+ all_results.extend(category_results)
102
+
103
+ combined_df = pd.DataFrame(all_results)
104
+ combined_df.to_csv(PROCESSED_DIR / "all_processed.csv", index=False)
105
+
106
+ # Generate and save statistics
107
+ stats = {
108
+ 'total_results': len(all_results),
109
+ 'results_per_category': {
110
+ category: len(results)
111
+ for category, results in self.processed_data.items()
112
+ },
113
+ 'domains_distribution': combined_df['domain'].value_counts().to_dict(),
114
+ 'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
115
+ }
116
+
117
+ with open(PROCESSED_DIR / "processing_stats.json", 'w') as f:
118
+ json.dump(stats, f, indent=2)
119
+
120
+ return self.processed_data
requirements.txt ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # API Clients
2
+ google-generativeai==0.8.3
3
+ google-search-results==2.4.2
4
+
5
+ # Data Processing
6
+ pandas==2.2.3
7
+ numpy==2.2.0
8
+
9
+ # Web Scraping
10
+ beautifulsoup4==4.12.3
11
+ requests==2.32.3
12
+
13
+ # Progress Bars and Utils
14
+ tqdm==4.67.1
15
+ ratelimit==2.2.1
16
+
17
+ # Date and Time
18
+ python-dateutil==2.9.0
19
+
20
+ # Output Formatting
21
+ tabulate==0.9.0 # For nice DataFrame display
22
+
23
+ # Optional but recommended for better HTML parsing
24
+ lxml==5.3.0
scraper.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import time
3
+ from datetime import datetime
4
+ from typing import Dict, List
5
+ import logging
6
+ from serpapi import GoogleSearch
7
+ from pathlib import Path
8
+
9
+ from config import (
10
+ SERP_API_KEY, SERP_MONTHLY_LIMIT, SEARCH_QUERIES,
11
+ RAW_DIR, LOG_DIR
12
+ )
13
+
14
+ class BloomingtonScraper:
15
+ def __init__(self):
16
+ self.search_count = 0
17
+ self.results_by_category = {}
18
+
19
+ # Set up logging
20
+ log_file = LOG_DIR / f"scraper_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
21
+ logging.basicConfig(
22
+ level=logging.INFO,
23
+ format='%(asctime)s - %(levelname)s - %(message)s',
24
+ filename=log_file
25
+ )
26
+
27
+ def _make_serp_request(self, query: str, category: str) -> List[Dict]:
28
+ """Make a single SERP API request"""
29
+ if self.search_count >= SERP_MONTHLY_LIMIT:
30
+ logging.warning("Monthly SERP API limit reached")
31
+ return []
32
+
33
+ params = {
34
+ "api_key": SERP_API_KEY,
35
+ "engine": "google",
36
+ "q": query,
37
+ "location": "Bloomington, Indiana, United States",
38
+ "google_domain": "google.com",
39
+ "num": 100, # Get maximum results per query
40
+ "start": 0
41
+ }
42
+
43
+ try:
44
+ search = GoogleSearch(params)
45
+ results = search.get_dict()
46
+ self.search_count += 1
47
+
48
+ # Save raw results
49
+ timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
50
+ raw_file = RAW_DIR / f"raw_results_{category}_{timestamp}.json"
51
+ with open(raw_file, 'w') as f:
52
+ json.dump(results, f, indent=2)
53
+
54
+ logging.info(f"SERP API calls used: {self.search_count}/{SERP_MONTHLY_LIMIT}")
55
+ return results.get('organic_results', [])
56
+
57
+ except Exception as e:
58
+ logging.error(f"SERP API error for query '{query}': {e}")
59
+ return []
60
+
61
+ def scrape_all_categories(self) -> Dict[str, List[Dict]]:
62
+ """Scrape data for all categories"""
63
+ for category, queries in SEARCH_QUERIES.items():
64
+ logging.info(f"Starting scraping for category: {category}")
65
+ category_results = []
66
+
67
+ for query in queries:
68
+ if self.search_count >= SERP_MONTHLY_LIMIT:
69
+ logging.warning(f"Monthly limit reached during {category} scraping")
70
+ break
71
+
72
+ results = self._make_serp_request(query, category)
73
+ category_results.extend(results)
74
+ time.sleep(2) # Polite delay between requests
75
+
76
+ self.results_by_category[category] = category_results
77
+
78
+ # Save category results
79
+ category_file = RAW_DIR / f"{category}_results.json"
80
+ with open(category_file, 'w') as f:
81
+ json.dump(category_results, f, indent=2)
82
+
83
+ logging.info(f"Completed scraping for {category}: {len(category_results)} results")
84
+
85
+ return self.results_by_category
86
+
87
+ def get_search_stats(self) -> Dict:
88
+ """Get statistics about the search results"""
89
+ stats = {
90
+ "total_searches": self.search_count,
91
+ "remaining_searches": SERP_MONTHLY_LIMIT - self.search_count,
92
+ "results_per_category": {
93
+ category: len(results)
94
+ for category, results in self.results_by_category.items()
95
+ }
96
+ }
97
+
98
+ # Save stats
99
+ stats_file = RAW_DIR / "search_stats.json"
100
+ with open(stats_file, 'w') as f:
101
+ json.dump(stats, f, indent=2)
102
+
103
+ return stats