Upload 2 files
Browse files- handler.py +99 -0
- requirements.txt +2 -0
handler.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# handler file for Huggingface Inference API
|
2 |
+
|
3 |
+
from typing import Dict, Any
|
4 |
+
|
5 |
+
from peft import PeftModel
|
6 |
+
from transformers import AutoTokenizer, AutoModel, BitsAndBytesConfig
|
7 |
+
import transformers
|
8 |
+
from transformers.models.mistral.modeling_mistral import MistralAttention
|
9 |
+
from ExtractableMistralAttention import forward
|
10 |
+
|
11 |
+
MistralAttention.forward = forward
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch import Tensor
|
15 |
+
import torch.nn.functional as F
|
16 |
+
|
17 |
+
|
18 |
+
class EndpointHandler():
|
19 |
+
def __init__(self):
|
20 |
+
self.instruction = 'Given a web search query, retrieve relevant passages that answer the query:\n'
|
21 |
+
self.max_length = 4096
|
22 |
+
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
23 |
+
|
24 |
+
|
25 |
+
self.tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct', trust_remote_code=True)
|
26 |
+
self.tokenizer.pad_token = '[PAD]'
|
27 |
+
self.tokenizer.padding_side = 'left'
|
28 |
+
|
29 |
+
bnb_config = BitsAndBytesConfig(load_in_8bit=True, bnb_8bit_compute_dtype=torch.float16)
|
30 |
+
|
31 |
+
self.model = AutoModel.from_pretrained(
|
32 |
+
'',
|
33 |
+
quantization_config=bnb_config,
|
34 |
+
device_map="auto",
|
35 |
+
trust_remote_code=True,
|
36 |
+
attn_implementation="eager",
|
37 |
+
)
|
38 |
+
self.model = PeftModel.from_pretrained(model, '/lora')
|
39 |
+
self.model.eval()
|
40 |
+
|
41 |
+
|
42 |
+
def last_token_pool(last_hidden_states: Tensor,
|
43 |
+
attention_mask: Tensor) -> Tensor:
|
44 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
45 |
+
if left_padding:
|
46 |
+
return last_hidden_states[:, -1]
|
47 |
+
else:
|
48 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
49 |
+
batch_size = last_hidden_states.shape[0]
|
50 |
+
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
51 |
+
|
52 |
+
|
53 |
+
def tokenize(self, text, type):
|
54 |
+
if type == 'query':
|
55 |
+
text = self.instruction + text
|
56 |
+
return self.tokenizer(text + self.tokenizer.eos_token, max_length=self.max_length, truncation=True, return_tensors='pt').to(self.device)
|
57 |
+
|
58 |
+
|
59 |
+
def extract_attn_vec(model):
|
60 |
+
return model._modules['layers'][-1].self_attn.attn_vec
|
61 |
+
|
62 |
+
|
63 |
+
def embed(self, text, type):
|
64 |
+
tokens = self.tokenize(text, type)
|
65 |
+
with torch.no_grad():
|
66 |
+
output = self.model(tokens['input_ids'], tokens['attention_mask']).last_hidden_state.detach()
|
67 |
+
embedding = self.last_token_pool(output, tokens['attention_mask'])
|
68 |
+
embedding = F.normalize(embedding, p=2, dim=1)
|
69 |
+
|
70 |
+
attn_vec = self.extract_attn_vec(self.model)
|
71 |
+
attn_vec = self.last_token_pool(attn_vec, tokens['attention_mask'])
|
72 |
+
attn_vec = F.normalize(attn_vec, p=2, dim=1)
|
73 |
+
del output, tokens
|
74 |
+
torch.cuda.empty_cache()
|
75 |
+
return embedding, attn_vec
|
76 |
+
|
77 |
+
|
78 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
79 |
+
"""
|
80 |
+
data args:
|
81 |
+
inputs (:obj: `str` | `PIL.Image` | `np.array`)
|
82 |
+
kwargs
|
83 |
+
Return:
|
84 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
85 |
+
"""
|
86 |
+
|
87 |
+
id = data.pop("id", data)
|
88 |
+
text = data.pop("text", data)
|
89 |
+
type = data.pop("type", data)
|
90 |
+
|
91 |
+
embeddings, attn_vec = self.embed(text, type)
|
92 |
+
embeddings = embeddings[0].tolist()
|
93 |
+
attn_vec = attn_vec[0].tolist()
|
94 |
+
|
95 |
+
if type == 'query':
|
96 |
+
return {"id": id, "embedding": embeddings, "attention_vec": attn_vec}
|
97 |
+
|
98 |
+
elif type == 'document':
|
99 |
+
return {"id": id, "embedding": embeddings}
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
peft
|
2 |
+
torch
|