|
import requests |
|
from typing import Union, Optional, Dict, List, Any |
|
from collections import defaultdict |
|
|
|
import torch |
|
import numpy as np |
|
|
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
from transformers.pipelines.automatic_speech_recognition import AutomaticSpeechRecognitionPipeline, chunk_iter |
|
from transformers.utils import is_torchaudio_available |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.tokenization_utils import PreTrainedTokenizer |
|
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor |
|
from pyannote.audio import Pipeline |
|
from pyannote.core.annotation import Annotation |
|
from punctuators.models import PunctCapSegModelONNX |
|
from diarizers import SegmentationModel |
|
|
|
|
|
class Punctuator: |
|
|
|
ja_punctuations = ["!", "?", "、", "。"] |
|
|
|
def __init__(self, model: str = "pcs_47lang"): |
|
self.punctuation_model = PunctCapSegModelONNX.from_pretrained(model) |
|
|
|
def punctuate(self, pipeline_chunk: List[Dict[str, Any]]) -> List[Dict[str, Any]]: |
|
|
|
def validate_punctuation(raw: str, punctuated: str): |
|
if 'unk' in punctuated.lower() or any(p in raw for p in self.ja_punctuations): |
|
return raw |
|
if punctuated.count("。") > 1: |
|
ind = punctuated.rfind("。") |
|
punctuated = punctuated.replace("。", "") |
|
punctuated = punctuated[:ind] + "。" + punctuated[ind:] |
|
return punctuated |
|
|
|
text_edit = self.punctuation_model.infer([c['text'] for c in pipeline_chunk]) |
|
return [ |
|
{ |
|
'timestamp': c['timestamp'], |
|
'speaker': c['speaker'], |
|
'text': validate_punctuation(c['text'], "".join(e)) |
|
} for c, e in zip(pipeline_chunk, text_edit) |
|
] |
|
|
|
|
|
class SpeakerDiarization: |
|
|
|
def __init__(self, |
|
device: torch.device, |
|
model_id: str = "pyannote/speaker-diarization-3.1", |
|
model_id_diarizers: Optional[str] = None): |
|
self.device = device |
|
self.pipeline = Pipeline.from_pretrained(model_id) |
|
self.pipeline = self.pipeline.to(self.device) |
|
if model_id_diarizers: |
|
self.pipeline._segmentation.model = SegmentationModel().from_pretrained( |
|
model_id_diarizers |
|
).to_pyannote_model().to(self.device) |
|
|
|
def __call__(self, |
|
audio: Union[torch.Tensor, np.ndarray], |
|
sampling_rate: int, |
|
num_speakers: Optional[int] = None, |
|
min_speakers: Optional[int] = None, |
|
max_speakers: Optional[int] = None) -> Annotation: |
|
if sampling_rate is None: |
|
raise ValueError("sampling_rate must be provided") |
|
if type(audio) is np.ndarray: |
|
audio = torch.as_tensor(audio) |
|
audio = torch.as_tensor(audio, dtype=torch.float32) |
|
if len(audio.shape) == 1: |
|
audio = audio.unsqueeze(0) |
|
elif len(audio.shape) > 3: |
|
raise ValueError("audio shape must be (channel, time)") |
|
audio = {"waveform": audio.to(self.device), "sample_rate": sampling_rate} |
|
output = self.pipeline(audio, num_speakers=num_speakers, min_speakers=min_speakers, max_speakers=max_speakers) |
|
return output |
|
|
|
|
|
class KotobaWhisperPipeline(AutomaticSpeechRecognitionPipeline): |
|
|
|
def __init__(self, |
|
model: "PreTrainedModel", |
|
model_pyannote: str = "pyannote/speaker-diarization-3.1", |
|
model_diarizers: Optional[str] = "diarizers-community/speaker-segmentation-fine-tuned-callhome-jpn", |
|
feature_extractor: Union["SequenceFeatureExtractor", str] = None, |
|
tokenizer: Optional[PreTrainedTokenizer] = None, |
|
device: Union[int, "torch.device"] = None, |
|
device_pyannote: Union[int, "torch.device"] = None, |
|
torch_dtype: Optional[Union[str, "torch.dtype"]] = None, |
|
**kwargs): |
|
self.type = "seq2seq_whisper" |
|
if device is None: |
|
device = "cpu" |
|
if device_pyannote is None: |
|
device_pyannote = device |
|
if type(device_pyannote) is str: |
|
device_pyannote = torch.device(device_pyannote) |
|
self.model_speaker_diarization = SpeakerDiarization( |
|
device=device_pyannote, |
|
model_id=model_pyannote, |
|
model_id_diarizers=model_diarizers |
|
) |
|
self.punctuator = None |
|
super().__init__( |
|
model=model, |
|
feature_extractor=feature_extractor, |
|
tokenizer=tokenizer, |
|
device=device, |
|
torch_dtype=torch_dtype, |
|
**kwargs |
|
) |
|
|
|
def _sanitize_parameters(self, |
|
chunk_length_s=None, |
|
stride_length_s=None, |
|
ignore_warning=None, |
|
decoder_kwargs=None, |
|
return_timestamps=None, |
|
return_language=None, |
|
generate_kwargs=None, |
|
max_new_tokens=None, |
|
add_punctuation: bool =False, |
|
return_unique_speaker: bool =True, |
|
num_speakers: Optional[int] = None, |
|
min_speakers: Optional[int] = None, |
|
max_speakers: Optional[int] = None): |
|
|
|
preprocess_params = {} |
|
if chunk_length_s is not None: |
|
preprocess_params["chunk_length_s"] = chunk_length_s |
|
if stride_length_s is not None: |
|
preprocess_params["stride_length_s"] = stride_length_s |
|
|
|
forward_params = defaultdict(dict) |
|
if max_new_tokens is not None: |
|
forward_params["max_new_tokens"] = max_new_tokens |
|
if generate_kwargs is not None: |
|
if max_new_tokens is not None and "max_new_tokens" in generate_kwargs: |
|
raise ValueError( |
|
"`max_new_tokens` is defined both as an argument and inside `generate_kwargs` argument, please use" |
|
" only 1 version" |
|
) |
|
forward_params.update(generate_kwargs) |
|
|
|
postprocess_params = {} |
|
if decoder_kwargs is not None: |
|
postprocess_params["decoder_kwargs"] = decoder_kwargs |
|
if return_timestamps is not None: |
|
|
|
if self.type == "seq2seq" and return_timestamps: |
|
raise ValueError("We cannot return_timestamps yet on non-CTC models apart from Whisper!") |
|
if self.type == "ctc_with_lm" and return_timestamps != "word": |
|
raise ValueError("CTC with LM can only predict word level timestamps, set `return_timestamps='word'`") |
|
if self.type == "ctc" and return_timestamps not in ["char", "word"]: |
|
raise ValueError( |
|
"CTC can either predict character level timestamps, or word level timestamps. " |
|
"Set `return_timestamps='char'` or `return_timestamps='word'` as required." |
|
) |
|
if self.type == "seq2seq_whisper" and return_timestamps == "char": |
|
raise ValueError( |
|
"Whisper cannot return `char` timestamps, only word level or segment level timestamps. " |
|
"Use `return_timestamps='word'` or `return_timestamps=True` respectively." |
|
) |
|
forward_params["return_timestamps"] = return_timestamps |
|
postprocess_params["return_timestamps"] = return_timestamps |
|
if return_language is not None: |
|
if self.type != "seq2seq_whisper": |
|
raise ValueError("Only Whisper can return language for now.") |
|
postprocess_params["return_language"] = return_language |
|
postprocess_params["return_language"] = return_language |
|
postprocess_params["add_punctuation"] = add_punctuation |
|
postprocess_params["return_unique_speaker"] = return_unique_speaker |
|
postprocess_params["num_speakers"] = num_speakers |
|
postprocess_params["min_speakers"] = min_speakers |
|
postprocess_params["max_speakers"] = max_speakers |
|
return preprocess_params, forward_params, postprocess_params |
|
|
|
def preprocess(self, inputs, chunk_length_s=0, stride_length_s=None): |
|
if isinstance(inputs, str): |
|
if inputs.startswith("http://") or inputs.startswith("https://"): |
|
|
|
|
|
inputs = requests.get(inputs).content |
|
else: |
|
with open(inputs, "rb") as f: |
|
inputs = f.read() |
|
|
|
if isinstance(inputs, bytes): |
|
inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate) |
|
|
|
stride = None |
|
extra = {} |
|
if isinstance(inputs, dict): |
|
stride = inputs.pop("stride", None) |
|
|
|
|
|
if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)): |
|
raise ValueError( |
|
"When passing a dictionary to AutomaticSpeechRecognitionPipeline, the dict needs to contain a " |
|
'"raw" key containing the numpy array representing the audio and a "sampling_rate" key, ' |
|
"containing the sampling_rate associated with that array" |
|
) |
|
|
|
_inputs = inputs.pop("raw", None) |
|
if _inputs is None: |
|
|
|
inputs.pop("path", None) |
|
_inputs = inputs.pop("array", None) |
|
in_sampling_rate = inputs.pop("sampling_rate") |
|
extra = inputs |
|
inputs = _inputs |
|
if in_sampling_rate != self.feature_extractor.sampling_rate: |
|
if is_torchaudio_available(): |
|
from torchaudio import functional as F |
|
else: |
|
raise ImportError( |
|
"torchaudio is required to resample audio samples in AutomaticSpeechRecognitionPipeline. " |
|
"The torchaudio package can be installed through: `pip install torchaudio`." |
|
) |
|
|
|
inputs = F.resample( |
|
torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate |
|
).numpy() |
|
ratio = self.feature_extractor.sampling_rate / in_sampling_rate |
|
else: |
|
ratio = 1 |
|
if stride is not None: |
|
if stride[0] + stride[1] > inputs.shape[0]: |
|
raise ValueError("Stride is too large for input") |
|
|
|
|
|
|
|
|
|
|
|
stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio))) |
|
if not isinstance(inputs, np.ndarray): |
|
raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`") |
|
if len(inputs.shape) != 1: |
|
raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline") |
|
|
|
if chunk_length_s: |
|
if stride_length_s is None: |
|
stride_length_s = chunk_length_s / 6 |
|
|
|
if isinstance(stride_length_s, (int, float)): |
|
stride_length_s = [stride_length_s, stride_length_s] |
|
|
|
|
|
|
|
|
|
align_to = getattr(self.model.config, "inputs_to_logits_ratio", 1) |
|
chunk_len = int(round(chunk_length_s * self.feature_extractor.sampling_rate / align_to) * align_to) |
|
stride_left = int(round(stride_length_s[0] * self.feature_extractor.sampling_rate / align_to) * align_to) |
|
stride_right = int(round(stride_length_s[1] * self.feature_extractor.sampling_rate / align_to) * align_to) |
|
|
|
if chunk_len < stride_left + stride_right: |
|
raise ValueError("Chunk length must be superior to stride length") |
|
|
|
for item in chunk_iter( |
|
inputs, self.feature_extractor, chunk_len, stride_left, stride_right, self.torch_dtype |
|
): |
|
item["audio_array"] = inputs |
|
yield item |
|
else: |
|
if inputs.shape[0] > self.feature_extractor.n_samples: |
|
processed = self.feature_extractor( |
|
inputs, |
|
sampling_rate=self.feature_extractor.sampling_rate, |
|
truncation=False, |
|
padding="longest", |
|
return_tensors="pt", |
|
) |
|
else: |
|
processed = self.feature_extractor( |
|
inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt" |
|
) |
|
|
|
if self.torch_dtype is not None: |
|
processed = processed.to(dtype=self.torch_dtype) |
|
if stride is not None: |
|
processed["stride"] = stride |
|
yield {"is_last": True, "audio_array": inputs, **processed, **extra} |
|
|
|
def _forward(self, model_inputs, **generate_kwargs): |
|
attention_mask = model_inputs.pop("attention_mask", None) |
|
stride = model_inputs.pop("stride", None) |
|
is_last = model_inputs.pop("is_last") |
|
audio_array = model_inputs.pop("audio_array") |
|
encoder = self.model.get_encoder() |
|
|
|
|
|
if "input_features" in model_inputs: |
|
inputs = model_inputs.pop("input_features") |
|
elif "input_values" in model_inputs: |
|
inputs = model_inputs.pop("input_values") |
|
else: |
|
raise ValueError( |
|
"Seq2Seq speech recognition model requires either a " |
|
f"`input_features` or `input_values` key, but only has {model_inputs.keys()}" |
|
) |
|
|
|
|
|
generate_kwargs["return_timestamps"] = True |
|
if inputs.shape[-1] > self.feature_extractor.nb_max_frames: |
|
generate_kwargs["input_features"] = inputs |
|
else: |
|
generate_kwargs["encoder_outputs"] = encoder(inputs, attention_mask=attention_mask) |
|
|
|
tokens = self.model.generate(attention_mask=attention_mask, **generate_kwargs) |
|
|
|
out = {"tokens": tokens} |
|
if self.type == "seq2seq_whisper": |
|
if stride is not None: |
|
out["stride"] = stride |
|
|
|
|
|
extra = model_inputs |
|
return {"is_last": is_last, "audio_array": audio_array, **out, **extra} |
|
|
|
def postprocess(self, |
|
model_outputs, |
|
decoder_kwargs: Optional[Dict] = None, |
|
return_language=None, |
|
add_punctuation: bool = False, |
|
return_unique_speaker: bool = True, |
|
num_speakers: Optional[int] = None, |
|
min_speakers: Optional[int] = None, |
|
max_speakers: Optional[int] = None, |
|
*args, |
|
**kwargs): |
|
assert len(model_outputs) > 0 |
|
outputs = super().postprocess( |
|
model_outputs=model_outputs, |
|
decoder_kwargs=decoder_kwargs, |
|
return_timestamps=True, |
|
return_language=return_language |
|
) |
|
audio_array = outputs.pop("audio_array")[0] |
|
sd = self.model_speaker_diarization( |
|
audio_array, |
|
num_speakers=num_speakers, |
|
min_speakers=min_speakers, |
|
max_speakers=max_speakers, |
|
sampling_rate=self.feature_extractor.sampling_rate |
|
) |
|
diarization_result = {s: [[i.start, i.end] for i in sd.label_timeline(s)] for s in sd.labels()} |
|
timelines = sd.get_timeline() |
|
|
|
pointer_ts = 0 |
|
pointer_chunk = 0 |
|
new_chunks = [] |
|
while True: |
|
if pointer_ts == len(timelines): |
|
ts = timelines[-1] |
|
for chunk in outputs["chunks"][pointer_chunk:]: |
|
chunk["speaker"] = sd.get_labels(ts) |
|
new_chunks.append(chunk) |
|
break |
|
if pointer_chunk == len(outputs["chunks"]): |
|
break |
|
ts = timelines[pointer_ts] |
|
|
|
chunk = outputs["chunks"][pointer_chunk] |
|
if "speaker" not in chunk: |
|
chunk["speaker"] = [] |
|
|
|
start, end = chunk["timestamp"] |
|
if ts.end <= start: |
|
pointer_ts += 1 |
|
elif end <= ts.start: |
|
if len(chunk["speaker"]) == 0: |
|
chunk["speaker"] += list(sd.get_labels(ts)) |
|
new_chunks.append(chunk) |
|
pointer_chunk += 1 |
|
else: |
|
chunk["speaker"] += list(sd.get_labels(ts)) |
|
if ts.end >= end: |
|
new_chunks.append(chunk) |
|
pointer_chunk += 1 |
|
else: |
|
pointer_ts += 1 |
|
for i in new_chunks: |
|
if "speaker" in i: |
|
if return_unique_speaker: |
|
i["speaker"] = [i["speaker"][0]] |
|
else: |
|
i["speaker"] = list(set(i["speaker"])) |
|
else: |
|
i["speaker"] = [] |
|
outputs["chunks"] = new_chunks |
|
if add_punctuation: |
|
if self.punctuator is None: |
|
self.punctuator = Punctuator() |
|
outputs["chunks"] = self.punctuator.punctuate(outputs["chunks"]) |
|
outputs["text"] = "".join([c["text"] for c in outputs["chunks"]]) |
|
outputs["speakers"] = sd.labels() |
|
speakers = [] |
|
for s in outputs["speakers"]: |
|
chunk_s = [c for c in outputs["chunks"] if s in c["speaker"]] |
|
if len(chunk_s) != 0: |
|
outputs[f"chunks/{s}"] = chunk_s |
|
outputs[f"text/{s}"] = "".join([c["text"] for c in outputs["chunks"] if s in c["speaker"]]) |
|
speakers.append(s) |
|
outputs["speakers"] = speakers |
|
outputs["diarization_result"] = diarization_result |
|
return outputs |
|
|