Automatic Speech Recognition
Transformers
Safetensors
Japanese
whisper
audio
hf-asr-leaderboard
Inference Endpoints
kotoba-whisper-v1.1 / pipeline /kotoba_whisper.py
asahi417's picture
Update pipeline/kotoba_whisper.py
827f44c verified
raw
history blame
14.5 kB
from typing import Union, Optional, Dict, List, Any
import requests
import torch
import numpy as np
from transformers.pipelines.audio_utils import ffmpeg_read
from transformers.pipelines.automatic_speech_recognition import AutomaticSpeechRecognitionPipeline, chunk_iter
from transformers.utils import is_torchaudio_available
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from stable_whisper import WhisperResult
from punctuators.models import PunctCapSegModelONNX
class Punctuator:
ja_punctuations = ["!", "?", "、", "。"]
def __init__(self, model: str = "pcs_47lang"):
self.punctuation_model = PunctCapSegModelONNX.from_pretrained(model)
def punctuate(self, pipeline_chunk: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
def validate_punctuation(raw: str, punctuated: str):
if 'unk' in punctuated.lower() or any(p in raw for p in self.ja_punctuations):
return raw
if punctuated.count("。") > 1:
ind = punctuated.rfind("。")
punctuated = punctuated.replace("。", "")
punctuated = punctuated[:ind] + "。" + punctuated[ind:]
return punctuated
text_edit = self.punctuation_model.infer([c['text'] for c in pipeline_chunk])
return [
{
'timestamp': c['timestamp'],
'text': validate_punctuation(c['text'], "".join(e))
} for c, e in zip(pipeline_chunk, text_edit)
]
def _fix_timestamp(sample_rate: int, result: List[Dict[str, Any]], audio: np.ndarray) -> WhisperResult or None:
def replace_none_ts(parts):
total_dur = round(audio.shape[-1] / sample_rate, 3)
_medium_dur = _ts_nonzero_mask = None
def ts_nonzero_mask() -> np.ndarray:
nonlocal _ts_nonzero_mask
if _ts_nonzero_mask is None:
_ts_nonzero_mask = np.array([(p['end'] or p['start']) is not None for p in parts])
return _ts_nonzero_mask
def medium_dur() -> float:
nonlocal _medium_dur
if _medium_dur is None:
nonzero_dus = [p['end'] - p['start'] for p in parts if None not in (p['end'], p['start'])]
nonzero_durs = np.array(nonzero_dus)
_medium_dur = np.median(nonzero_durs) * 2 if len(nonzero_durs) else 2.0
return _medium_dur
def _curr_max_end(start: float, next_idx: float) -> float:
max_end = total_dur
if next_idx != len(parts):
mask = np.flatnonzero(ts_nonzero_mask()[next_idx:])
if len(mask):
_part = parts[mask[0]+next_idx]
max_end = _part['start'] or _part['end']
new_end = round(start + medium_dur(), 3)
if new_end > max_end:
return max_end
return new_end
for i, part in enumerate(parts, 1):
if part['start'] is None:
is_first = i == 1
if is_first:
new_start = round((part['end'] or 0) - medium_dur(), 3)
part['start'] = max(new_start, 0.0)
else:
part['start'] = parts[i - 2]['end']
if part['end'] is None:
no_next_start = i == len(parts) or parts[i]['start'] is None
part['end'] = _curr_max_end(part['start'], i) if no_next_start else parts[i]['start']
words = [dict(start=word['timestamp'][0], end=word['timestamp'][1], word=word['text']) for word in result]
replace_none_ts(words)
return WhisperResult([words], force_order=True, check_sorted=True)
def fix_timestamp(pipeline_output: List[Dict[str, Any]], audio: np.ndarray, sample_rate: int) -> List[Dict[str, Any]]:
result = _fix_timestamp(sample_rate=sample_rate, audio=audio, result=pipeline_output)
result.adjust_by_silence(
audio,
q_levels=20,
k_size=5,
sample_rate=sample_rate,
min_word_dur=None,
word_level=True,
verbose=True,
nonspeech_error=0.1,
use_word_position=True
)
if result.has_words:
result.regroup(True)
return [{"timestamp": [s.start, s.end], "text": s.text} for s in result.segments]
class KotobaWhisperPipeline(AutomaticSpeechRecognitionPipeline):
def __init__(self,
model: "PreTrainedModel",
feature_extractor: Union["SequenceFeatureExtractor", str] = None,
tokenizer: Optional[PreTrainedTokenizer] = None,
device: Union[int, "torch.device"] = None,
torch_dtype: Optional[Union[str, "torch.dtype"]] = None,
punctuator: bool = True,
stable_ts: bool = False,
**kwargs):
self.type = "seq2seq_whisper"
self.stable_ts = stable_ts
if punctuator:
self.punctuator = Punctuator()
else:
self.punctuator = None
super().__init__(
model=model,
feature_extractor=feature_extractor,
tokenizer=tokenizer,
device=device,
torch_dtype=torch_dtype,
**kwargs
)
def preprocess(self, inputs, chunk_length_s=0, stride_length_s=None):
if isinstance(inputs, str):
if inputs.startswith("http://") or inputs.startswith("https://"):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
inputs = requests.get(inputs).content
else:
with open(inputs, "rb") as f:
inputs = f.read()
if isinstance(inputs, bytes):
inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)
stride = None
extra = {}
if isinstance(inputs, dict):
stride = inputs.pop("stride", None)
# Accepting `"array"` which is the key defined in `datasets` for
# better integration
if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)):
raise ValueError(
"When passing a dictionary to AutomaticSpeechRecognitionPipeline, the dict needs to contain a "
'"raw" key containing the numpy array representing the audio and a "sampling_rate" key, '
"containing the sampling_rate associated with that array"
)
_inputs = inputs.pop("raw", None)
if _inputs is None:
# Remove path which will not be used from `datasets`.
inputs.pop("path", None)
_inputs = inputs.pop("array", None)
in_sampling_rate = inputs.pop("sampling_rate")
extra = inputs
inputs = _inputs
if in_sampling_rate != self.feature_extractor.sampling_rate:
if is_torchaudio_available():
from torchaudio import functional as F
else:
raise ImportError(
"torchaudio is required to resample audio samples in AutomaticSpeechRecognitionPipeline. "
"The torchaudio package can be installed through: `pip install torchaudio`."
)
inputs = F.resample(
torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate
).numpy()
ratio = self.feature_extractor.sampling_rate / in_sampling_rate
else:
ratio = 1
if stride is not None:
if stride[0] + stride[1] > inputs.shape[0]:
raise ValueError("Stride is too large for input")
# Stride needs to get the chunk length here, it's going to get
# swallowed by the `feature_extractor` later, and then batching
# can add extra data in the inputs, so we need to keep track
# of the original length in the stride so we can cut properly.
stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio)))
if not isinstance(inputs, np.ndarray):
raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
if len(inputs.shape) != 1:
raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")
if chunk_length_s:
if stride_length_s is None:
stride_length_s = chunk_length_s / 6
if isinstance(stride_length_s, (int, float)):
stride_length_s = [stride_length_s, stride_length_s]
# XXX: Carefuly, this variable will not exist in `seq2seq` setting.
# Currently chunking is not possible at this level for `seq2seq` so
# it's ok.
align_to = getattr(self.model.config, "inputs_to_logits_ratio", 1)
chunk_len = int(round(chunk_length_s * self.feature_extractor.sampling_rate / align_to) * align_to)
stride_left = int(round(stride_length_s[0] * self.feature_extractor.sampling_rate / align_to) * align_to)
stride_right = int(round(stride_length_s[1] * self.feature_extractor.sampling_rate / align_to) * align_to)
if chunk_len < stride_left + stride_right:
raise ValueError("Chunk length must be superior to stride length")
for item in chunk_iter(
inputs, self.feature_extractor, chunk_len, stride_left, stride_right, self.torch_dtype
):
item["audio_array"] = inputs
yield item
else:
if inputs.shape[0] > self.feature_extractor.n_samples:
processed = self.feature_extractor(
inputs,
sampling_rate=self.feature_extractor.sampling_rate,
truncation=False,
padding="longest",
return_tensors="pt",
)
else:
processed = self.feature_extractor(
inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt"
)
if self.torch_dtype is not None:
processed = processed.to(dtype=self.torch_dtype)
if stride is not None:
processed["stride"] = stride
yield {"is_last": True, "audio_array": inputs, **processed, **extra}
def _forward(self, model_inputs, return_timestamps=False, **generate_kwargs):
attention_mask = model_inputs.pop("attention_mask", None)
stride = model_inputs.pop("stride", None)
is_last = model_inputs.pop("is_last")
audio_array = model_inputs.pop("audio_array")
encoder = self.model.get_encoder()
# Consume values so we can let extra information flow freely through
# the pipeline (important for `partial` in microphone)
if "input_features" in model_inputs:
inputs = model_inputs.pop("input_features")
elif "input_values" in model_inputs:
inputs = model_inputs.pop("input_values")
else:
raise ValueError(
"Seq2Seq speech recognition model requires either a "
f"`input_features` or `input_values` key, but only has {model_inputs.keys()}"
)
# custom processing for Whisper timestamps and word-level timestamps
if return_timestamps:
generate_kwargs["return_timestamps"] = return_timestamps
if return_timestamps == "word":
generate_kwargs["return_token_timestamps"] = True
generate_kwargs["return_segments"] = True
if stride is not None:
if isinstance(stride, tuple):
generate_kwargs["num_frames"] = stride[0] // self.feature_extractor.hop_length
else:
generate_kwargs["num_frames"] = [s[0] // self.feature_extractor.hop_length for s in stride]
if inputs.shape[-1] > self.feature_extractor.nb_max_frames:
generate_kwargs["input_features"] = inputs
else:
generate_kwargs["encoder_outputs"] = encoder(inputs, attention_mask=attention_mask)
tokens = self.model.generate(attention_mask=attention_mask, **generate_kwargs)
# whisper longform generation stores timestamps in "segments"
if return_timestamps == "word":
if "segments" not in tokens:
out = {"tokens": tokens["sequences"], "token_timestamps": tokens["token_timestamps"]}
else:
token_timestamps = [
torch.cat([segment["token_timestamps"] for segment in segment_list])
for segment_list in tokens["segments"]
]
out = {"tokens": tokens["sequences"], "token_timestamps": token_timestamps}
else:
out = {"tokens": tokens}
if self.type == "seq2seq_whisper":
if stride is not None:
out["stride"] = stride
# Leftover
extra = model_inputs
return {"is_last": is_last, "audio_array": audio_array, **out, **extra}
def postprocess(self,
model_outputs,
decoder_kwargs: Optional[Dict] = None,
return_timestamps=None,
return_language=None):
assert len(model_outputs) > 0
for model_output in model_outputs:
audio_array = model_output.pop("audio_array")[0]
outputs = super().postprocess(
model_outputs=model_outputs,
decoder_kwargs=decoder_kwargs,
return_timestamps=True,
return_language=return_language
)
if self.stable_ts:
outputs["chunks"] = fix_timestamp(
pipeline_output=outputs["chunks"], audio=audio_array, sample_rate=self.feature_extractor.sampling_rate
)
if self.punctuator:
outputs["chunks"] = self.punctuator.punctuate(outputs["chunks"])
outputs["text"] = "".join([c["text"] for c in outputs["chunks"]])
if not return_timestamps:
outputs.pop("chunks")
return outputs