Update README.md
Browse files
README.md
CHANGED
@@ -64,70 +64,48 @@ _Kotoba-Whisper_ is a collection of distilled [Whisper](https://arxiv.org/abs/22
|
|
64 |
we employ OpenAI's [Whisper large-v3](https://huggingface.co/openai/whisper-large-v3) as the teacher model, and the student model that consists the full encoder of the
|
65 |
teacher whisper model, and a decoder with two layers initialized from the first and last layer of the whisper model.
|
66 |
As the initial version, we release ***kotoba-whisper-v1.0*** trained on the `large` subset of [ReazonSpeech](https://huggingface.co/datasets/reazon-research/reazonspeech),
|
67 |
-
which amounts 1,253 hours of audio with 16,861,235 characters of transcriptions (5 sec audio with 18 text tokens in average)
|
68 |
-
|
|
|
69 |
|
70 |
|
71 |
-
|
72 |
-
## Table of Contents
|
73 |
-
Since the sequential algorithm is the "de-facto" transcription algorithm across the most popular Whisper libraries
|
74 |
-
(Whisper cpp, Faster-Whisper, OpenAI Whisper), this distilled model is designed to be compatible with these libraries.
|
75 |
-
You can expect significant performance gains by switching from previous Distil-Whisper checkpoints to distil-large-v3
|
76 |
-
when using these libraries. For convenience, the weights for the most popular libraries are already converted,
|
77 |
-
with instructions for getting started below.
|
78 |
-
|
79 |
-
1. [Evaluation Results](#evaluation-results)
|
80 |
-
2. [Transformers Usage](#transformers-usage)
|
81 |
-
* [Short-Form Transcription](#short-form-transcription)
|
82 |
-
* [Sequential Long-Form](#sequential-long-form)
|
83 |
-
* [Chunked Long-Form](#chunked-long-form)
|
84 |
-
* [Speculative Decoding](#speculative-decoding)
|
85 |
-
* [Additional Speed and Memory Improvements](#additional-speed--memory-improvements)
|
86 |
-
2. [Library Integrations](#library-integrations)
|
87 |
-
* [Whisper cpp](#whispercpp)
|
88 |
-
* [Faster Whisper](#faster-whisper)
|
89 |
-
3. [Model Details](#model-details)
|
90 |
-
|
91 |
-
|
92 |
-
## Evaluation Results
|
93 |
-
***kotoba-whisper-v1.0*** achieves better CER and WER than the [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) in the in-domain held-out test set from ReazonSpeech, and
|
94 |
achieves competitive CER and WER on the out-of-domain test set including [JSUT basic 5000](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) and
|
95 |
the Japanese subset from [CommonVoice 8.0](https://huggingface.co/datasets/common_voice).
|
96 |
|
97 |
-
|
|
|
98 |
|
99 |
| Model | CommonVoice 8.0 (Japanese) | JSUT Basic 5000 | ReazonSpeech Test |
|
100 |
|:------------------------------------------------------------------------------------------------|---------------------------:|----------------:|------------------:|
|
101 |
-
| [
|
102 |
| [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 8.52 | 7.18 | 15.18 |
|
103 |
| [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 11.34 | 9.87 | 29.56 |
|
104 |
| [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 15.26 | 14.22 | 34.29 |
|
105 |
| [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 46.86 | 35.69 | 96.69 |
|
106 |
|
107 |
-
|
108 |
|
109 |
| Model | CommonVoice 8.0 (Japanese) | JSUT Basic 5000 | ReazonSpeech Test |
|
110 |
|:------------------------------------------------------------------------------------------------|---------------------------:|----------------:|------------------:|
|
111 |
-
| [
|
112 |
| [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 55.41 | 59.34 | 60.23 |
|
113 |
| [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 63.64 | 69.52 | 76.04 |
|
114 |
| [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 74.21 | 82.02 | 82.99 |
|
115 |
| [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 93.78 | 97.72 | 94.85 |
|
116 |
|
117 |
-
|
118 |
-
As kotoba-whisper uses the same architecture as [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3),
|
119 |
it inherits the benefit of the improved latency compared to [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3)
|
120 |
(**6.3x faster than large-v3**, see the table below taken from [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)).
|
121 |
|
122 |
-
| Model
|
123 |
-
|
124 |
| **[kotoba-tech/kotoba-whisper-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0)**| **756** | **6.3** |
|
125 |
-
| [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3)
|
126 |
|
127 |
|
128 |
## Transformers Usage
|
129 |
-
|
130 |
-
distil-large-v3 is supported in the Hugging Face 🤗 Transformers library from version 4.39 onwards. To run the model, first
|
131 |
install the latest version of Transformers. For this example, we'll also install 🤗 Datasets to load a toy audio dataset
|
132 |
from the Hugging Face Hub:
|
133 |
|
@@ -137,7 +115,6 @@ pip install --upgrade transformers accelerate datasets[audio]
|
|
137 |
```
|
138 |
|
139 |
### Short-Form Transcription
|
140 |
-
|
141 |
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
142 |
class to transcribe short-form audio files (< 30-seconds) as follows:
|
143 |
|
@@ -146,19 +123,15 @@ import torch
|
|
146 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
147 |
from datasets import load_dataset
|
148 |
|
149 |
-
|
150 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
151 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
152 |
-
|
153 |
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
|
|
|
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
)
|
158 |
model.to(device)
|
159 |
-
|
160 |
processor = AutoProcessor.from_pretrained(model_id)
|
161 |
-
|
162 |
pipe = pipeline(
|
163 |
"automatic-speech-recognition",
|
164 |
model=model,
|
@@ -169,110 +142,55 @@ pipe = pipeline(
|
|
169 |
device=device,
|
170 |
)
|
171 |
|
172 |
-
|
|
|
173 |
sample = dataset[0]["audio"]
|
174 |
|
|
|
175 |
result = pipe(sample)
|
176 |
print(result["text"])
|
177 |
```
|
178 |
|
179 |
-
To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
|
180 |
```diff
|
181 |
- result = pipe(sample)
|
182 |
+ result = pipe("audio.mp3")
|
183 |
```
|
184 |
|
185 |
-
For segment-level timestamps, pass the argument `return_timestamps=True` and return the `"chunks"` output:
|
186 |
```python
|
187 |
result = pipe(sample, return_timestamps=True)
|
188 |
print(result["chunks"])
|
189 |
```
|
190 |
|
191 |
-
<details>
|
192 |
-
|
193 |
-
<summary> For more control over the generation parameters, use the model + processor API directly: </summary>
|
194 |
-
|
195 |
-
Ad-hoc generation arguments can be passed to `model.generate`, including `num_beams` for beam-search, `return_timestamps`
|
196 |
-
for segment-level timestamps, and `prompt_ids` for prompting. See the [docstrings](https://huggingface.co/docs/transformers/en/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate)
|
197 |
-
for more details.
|
198 |
-
|
199 |
-
```python
|
200 |
-
import torch
|
201 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
202 |
-
from datasets import Audio, load_dataset
|
203 |
-
|
204 |
-
|
205 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
206 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
207 |
-
|
208 |
-
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
209 |
-
|
210 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
211 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
212 |
-
)
|
213 |
-
model.to(device)
|
214 |
-
|
215 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
216 |
-
|
217 |
-
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
218 |
-
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
|
219 |
-
sample = dataset[0]["audio"]
|
220 |
-
|
221 |
-
input_features = processor(
|
222 |
-
sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt"
|
223 |
-
).input_features
|
224 |
-
|
225 |
-
input_features = input_features.to(device, dtype=torch_dtype)
|
226 |
-
|
227 |
-
gen_kwargs = {
|
228 |
-
"max_new_tokens": 128,
|
229 |
-
"num_beams": 1,
|
230 |
-
"return_timestamps": False,
|
231 |
-
}
|
232 |
-
|
233 |
-
pred_ids = model.generate(input_features, **gen_kwargs)
|
234 |
-
pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=gen_kwargs["return_timestamps"])
|
235 |
-
|
236 |
-
print(pred_text)
|
237 |
-
```
|
238 |
-
|
239 |
-
</details>
|
240 |
-
|
241 |
### Sequential Long-Form
|
242 |
-
|
243 |
-
|
244 |
-
long-form transcription algorithm. This algorithm uses a sliding window for buffered inference of long audio files (> 30-seconds),
|
245 |
-
and returns more accurate transcriptions compared to the [chunked long-form algorithm](#chunked-long-form).
|
246 |
-
|
247 |
The sequential long-form algorithm should be used in either of the following scenarios:
|
|
|
248 |
1. Transcription accuracy is the most important factor, and latency is less of a consideration
|
249 |
2. You are transcribing **batches** of long audio files, in which case the latency of sequential is comparable to chunked, while being up to 0.5% WER more accurate
|
250 |
|
251 |
If you are transcribing single long audio files and latency is the most important factor, you should use the chunked algorithm
|
252 |
described [below](#chunked-long-form). For a detailed explanation of the different algorithms, refer to Sections 5 of
|
253 |
-
the [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf).
|
254 |
-
|
255 |
-
The [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
256 |
class can be used to transcribe long audio files with the sequential algorithm as follows:
|
257 |
|
258 |
```python
|
259 |
import torch
|
|
|
260 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
261 |
from datasets import load_dataset
|
262 |
|
263 |
-
|
264 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
265 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
266 |
-
|
267 |
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
|
|
|
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
)
|
272 |
model.to(device)
|
273 |
-
|
274 |
processor = AutoProcessor.from_pretrained(model_id)
|
275 |
-
|
276 |
pipe = pipeline(
|
277 |
"automatic-speech-recognition",
|
278 |
model=model,
|
@@ -283,75 +201,19 @@ pipe = pipeline(
|
|
283 |
device=device,
|
284 |
)
|
285 |
|
286 |
-
|
287 |
-
|
|
|
288 |
|
|
|
289 |
result = pipe(sample)
|
290 |
print(result["text"])
|
291 |
```
|
292 |
|
293 |
-
<details>
|
294 |
-
|
295 |
-
<summary> For more control over the generation parameters, use the model + processor API directly: </summary>
|
296 |
-
|
297 |
-
```python
|
298 |
-
import torch
|
299 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
300 |
-
from datasets import Audio, load_dataset
|
301 |
-
|
302 |
-
|
303 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
304 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
305 |
-
|
306 |
-
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
307 |
-
|
308 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
309 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
310 |
-
)
|
311 |
-
model.to(device)
|
312 |
-
|
313 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
314 |
-
|
315 |
-
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
316 |
-
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
|
317 |
-
sample = dataset[0]["audio"]
|
318 |
-
|
319 |
-
inputs = processor(
|
320 |
-
sample["array"],
|
321 |
-
sampling_rate=sample["sampling_rate"],
|
322 |
-
return_tensors="pt",
|
323 |
-
truncation=False,
|
324 |
-
padding="longest",
|
325 |
-
return_attention_mask=True,
|
326 |
-
)
|
327 |
-
inputs = inputs.to(device, dtype=torch_dtype)
|
328 |
-
|
329 |
-
gen_kwargs = {
|
330 |
-
"max_new_tokens": 448,
|
331 |
-
"num_beams": 1,
|
332 |
-
"condition_on_prev_tokens": False,
|
333 |
-
"compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
|
334 |
-
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
335 |
-
"logprob_threshold": -1.0,
|
336 |
-
"no_speech_threshold": 0.6,
|
337 |
-
"return_timestamps": True,
|
338 |
-
}
|
339 |
-
|
340 |
-
pred_ids = model.generate(**i nputs, **gen_kwargs)
|
341 |
-
pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=False)
|
342 |
-
|
343 |
-
print(pred_text)
|
344 |
-
```
|
345 |
-
|
346 |
-
</details>
|
347 |
|
348 |
### Chunked Long-Form
|
349 |
-
|
350 |
-
|
351 |
-
a single large audio file is being transcribed and the fastest possible inference is required. In such circumstances,
|
352 |
-
the chunked algorithm is up to 9x faster than OpenAI's sequential long-form implementation (see Table 7 of the
|
353 |
-
[Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf)).
|
354 |
-
|
355 |
To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For distil-large-v3, a chunk length of 25-seconds
|
356 |
is optimal. To activate batching over long audio files, pass the argument `batch_size`:
|
357 |
|
@@ -360,19 +222,15 @@ import torch
|
|
360 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
361 |
from datasets import load_dataset
|
362 |
|
363 |
-
|
364 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
365 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
366 |
-
|
367 |
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
|
|
|
|
368 |
|
369 |
-
|
370 |
-
|
371 |
-
)
|
372 |
model.to(device)
|
373 |
-
|
374 |
processor = AutoProcessor.from_pretrained(model_id)
|
375 |
-
|
376 |
pipe = pipeline(
|
377 |
"automatic-speech-recognition",
|
378 |
model=model,
|
@@ -385,17 +243,17 @@ pipe = pipeline(
|
|
385 |
device=device,
|
386 |
)
|
387 |
|
388 |
-
|
389 |
-
|
|
|
390 |
|
|
|
391 |
result = pipe(sample)
|
392 |
print(result["text"])
|
393 |
```
|
394 |
|
395 |
-
|
396 |
### Additional Speed & Memory Improvements
|
397 |
-
|
398 |
-
You can apply additional speed and memory improvements to Distil-Whisper to further reduce the inference speed and VRAM
|
399 |
requirements. These optimisations primarily target the attention kernel, swapping it from an eager implementation to a
|
400 |
more efficient flash attention version.
|
401 |
|
@@ -438,106 +296,10 @@ Once a valid PyTorch version is installed, SDPA is activated by default. It can
|
|
438 |
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="sdpa")
|
439 |
```
|
440 |
|
441 |
-
## Library Integrations
|
442 |
-
|
443 |
-
### Whisper.cpp
|
444 |
-
|
445 |
-
Distil-Whisper can be run with the [Whisper.cpp](https://github.com/ggerganov/whisper.cpp) package with the original
|
446 |
-
sequential long-form transcription algorithm. In a provisional benchmark on Mac M1, distil-large-v3 is over 5x faster
|
447 |
-
than Whisper large-v3, while performing to within 0.8% WER over long-form audio.
|
448 |
-
|
449 |
-
Steps for getting started:
|
450 |
-
|
451 |
-
1. Clone the Whisper.cpp repository:
|
452 |
-
```
|
453 |
-
git clone https://github.com/ggerganov/whisper.cpp.git
|
454 |
-
cd whisper.cpp
|
455 |
-
```
|
456 |
-
2. Install the Hugging Face Hub Python package:
|
457 |
-
```bash
|
458 |
-
pip install --upgrade huggingface_hub
|
459 |
-
```
|
460 |
-
And download the GGML weights for distil-large-v3 using the following Python snippet:
|
461 |
-
|
462 |
-
```python
|
463 |
-
from huggingface_hub import hf_hub_download
|
464 |
-
|
465 |
-
hf_hub_download(repo_id='kotoba-tech/kotoba-whisper-v1.0-ggml', filename='ggml-distil-large-v3.bin', local_dir='./models')
|
466 |
-
```
|
467 |
-
|
468 |
-
Note that if you do not have a Python environment set-up, you can also download the weights directly with `wget`:
|
469 |
-
|
470 |
-
```bash
|
471 |
-
wget https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-ggml/resolve/main/ggml-distil-large-v3.bin -P ./models
|
472 |
-
```
|
473 |
-
|
474 |
-
3. Run inference using the provided sample audio:
|
475 |
-
|
476 |
-
```bash
|
477 |
-
make -j && ./main -m models/ggml-distil-large-v3.bin -f samples/jfk.wav
|
478 |
-
```
|
479 |
-
|
480 |
-
### Faster-Whisper
|
481 |
-
|
482 |
-
Faster-Whisper is a reimplementation of Whisper using [CTranslate2](https://github.com/OpenNMT/CTranslate2/), a fast
|
483 |
-
inference engine for Transformer models.
|
484 |
-
|
485 |
-
First, install the Faster-Whisper package according to the [official instructions](https://github.com/SYSTRAN/faster-whisper#installation).
|
486 |
-
For this example, we'll also install 🤗 Datasets to load a toy audio dataset from the Hugging Face Hub:
|
487 |
-
|
488 |
-
```bash
|
489 |
-
pip install --upgrade pip
|
490 |
-
pip install --upgrade git+https://github.com/SYSTRAN/faster-whisper datasets[audio]
|
491 |
-
```
|
492 |
-
|
493 |
-
The following code snippet loads the distil-large-v3 model and runs inference on an example file from the LibriSpeech ASR
|
494 |
-
dataset:
|
495 |
-
|
496 |
-
```python
|
497 |
-
import torch
|
498 |
-
from faster_whisper import WhisperModel
|
499 |
-
from datasets import load_dataset
|
500 |
-
|
501 |
-
# define our torch configuration
|
502 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
503 |
-
compute_type = "float16" if torch.cuda.is_available() else "float32"
|
504 |
-
|
505 |
-
# load model on GPU if available, else cpu
|
506 |
-
model = WhisperModel("distil-large-v3", device=device, compute_type=compute_type)
|
507 |
-
|
508 |
-
# load toy dataset for example
|
509 |
-
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
510 |
-
sample = dataset[1]["audio"]["path"]
|
511 |
-
|
512 |
-
segments, info = model.transcribe(sample, beam_size=1)
|
513 |
-
|
514 |
-
for segment in segments:
|
515 |
-
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
|
516 |
-
```
|
517 |
-
|
518 |
-
To transcribe a local audio file, simply pass the path to the audio file as the `audio` argument to transcribe:
|
519 |
-
|
520 |
-
```python
|
521 |
-
segments, info = model.transcribe("audio.mp3", beam_size=1)
|
522 |
-
```
|
523 |
-
|
524 |
|
525 |
## Model Details
|
|
|
526 |
|
527 |
-
Distil-Whisper inherits the encoder-decoder architecture from Whisper. The encoder maps a sequence of speech vector
|
528 |
-
inputs to a sequence of hidden-state vectors. The decoder auto-regressively predicts text tokens, conditional on all
|
529 |
-
previous tokens and the encoder hidden-states. Consequently, the encoder is only run forward once, whereas the decoder
|
530 |
-
is run as many times as the number of tokens generated. In practice, this means the decoder accounts for over 90% of
|
531 |
-
total inference time. Thus, to optimise for latency, the focus is on minimising the inference time of the decoder.
|
532 |
-
|
533 |
-
To distill the Whisper model, we reduce the number of decoder layers while keeping the encoder fixed.
|
534 |
-
The encoder (shown in green) is entirely copied from the teacher to the student and frozen during training.
|
535 |
-
The student's decoder consists of a subset of the teacher decoder layers, which are intialised from maximally spaced layers.
|
536 |
-
The model is then trained on a weighted sum of the KL divergence and pseudo-label loss terms.
|
537 |
-
|
538 |
-
<p align="center">
|
539 |
-
<img src="https://huggingface.co/datasets/distil-whisper/figures/resolve/main/architecture.png?raw=true" width="600"/>
|
540 |
-
</p>
|
541 |
|
542 |
## Evaluation
|
543 |
|
@@ -557,123 +319,62 @@ Evaluation can then be run end-to-end with the following example:
|
|
557 |
|
558 |
```python
|
559 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
560 |
-
from datasets import load_dataset
|
561 |
from evaluate import load
|
562 |
import torch
|
563 |
from tqdm import tqdm
|
564 |
|
565 |
-
#
|
566 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
567 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
568 |
-
|
569 |
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
|
|
|
|
|
|
|
|
|
|
570 |
|
571 |
-
# load
|
572 |
-
model =
|
573 |
-
model
|
574 |
processor = AutoProcessor.from_pretrained(model_id)
|
575 |
|
576 |
-
# load the dataset with
|
577 |
-
dataset = load_dataset("
|
|
|
|
|
578 |
|
579 |
-
#
|
580 |
-
wer_metric = load("wer")
|
581 |
|
582 |
def inference(batch):
|
583 |
# 1. Pre-process the audio data to log-mel spectrogram inputs
|
584 |
audio = [sample["array"] for sample in batch["audio"]]
|
585 |
input_features = processor(audio, sampling_rate=batch["audio"][0]["sampling_rate"], return_tensors="pt").input_features
|
586 |
input_features = input_features.to(device, dtype=torch_dtype)
|
587 |
-
|
588 |
# 2. Auto-regressively generate the predicted token ids
|
589 |
pred_ids = model.generate(input_features, max_new_tokens=128)
|
590 |
-
|
591 |
# 3. Decode the token ids to the final transcription
|
592 |
batch["transcription"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
|
593 |
-
batch["reference"] = batch[
|
594 |
return batch
|
595 |
|
596 |
-
|
597 |
-
dataset = dataset.map(function=inference, batched=True, batch_size=16)
|
598 |
|
|
|
599 |
all_transcriptions = []
|
600 |
all_references = []
|
601 |
-
|
602 |
-
# iterate over the dataset and run inference
|
603 |
for result in tqdm(dataset, desc="Evaluating..."):
|
604 |
all_transcriptions.append(result["transcription"])
|
605 |
all_references.append(result["reference"])
|
606 |
|
607 |
# normalize predictions and references
|
608 |
-
all_transcriptions = [
|
609 |
-
all_references = [
|
610 |
-
|
611 |
-
# compute the WER metric
|
612 |
-
wer = 100 * wer_metric.compute(predictions=all_transcriptions, references=all_references)
|
613 |
-
print(wer)
|
614 |
|
|
|
|
|
|
|
|
|
615 |
```
|
616 |
-
**Print Output:**
|
617 |
-
```
|
618 |
-
2.428920763531516
|
619 |
-
```
|
620 |
-
|
621 |
-
|
622 |
-
## Data
|
623 |
-
|
624 |
-
Distil-Whisper is trained on 22,000 hours of audio data from nine open-source, permissively licensed speech datasets on the
|
625 |
-
Hugging Face Hub:
|
626 |
-
|
627 |
-
| Dataset | Size / h | Speakers | Domain | Licence |
|
628 |
-
|-----------------------------------------------------------------------------------------|----------|----------|-----------------------------|-----------------|
|
629 |
-
| [People's Speech](https://huggingface.co/datasets/MLCommons/peoples_speech) | 12,000 | unknown | Internet Archive | CC-BY-SA-4.0 |
|
630 |
-
| [Common Voice 13](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) | 3,000 | unknown | Narrated Wikipedia | CC0-1.0 |
|
631 |
-
| [GigaSpeech](https://huggingface.co/datasets/speechcolab/gigaspeech) | 2,500 | unknown | Audiobook, podcast, YouTube | apache-2.0 |
|
632 |
-
| Fisher | 1,960 | 11,900 | Telephone conversations | LDC |
|
633 |
-
| [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) | 960 | 2,480 | Audiobooks | CC-BY-4.0 |
|
634 |
-
| [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | 540 | 1,310 | European Parliament | CC0 |
|
635 |
-
| [TED-LIUM](https://huggingface.co/datasets/LIUM/tedlium) | 450 | 2,030 | TED talks | CC-BY-NC-ND 3.0 |
|
636 |
-
| SwitchBoard | 260 | 540 | Telephone conversations | LDC |
|
637 |
-
| [AMI](https://huggingface.co/datasets/edinburghcstr/ami) | 100 | unknown | Meetings | CC-BY-4.0 |
|
638 |
-
||||||
|
639 |
-
| **Total** | 21,770 | 18,260+ | | |
|
640 |
-
|
641 |
-
The combined dataset spans 10 distinct domains and over 50k speakers. The diversity of this dataset is crucial to ensuring
|
642 |
-
the distilled model is robust to audio distributions and noise.
|
643 |
-
|
644 |
-
The audio data is then pseudo-labelled using the Whisper large-v3 model: we use Whisper to generate predictions for all
|
645 |
-
the audio in our training set and use these as the target labels during training. Using pseudo-labels ensures that the
|
646 |
-
transcriptions are consistently formatted across datasets and provides sequence-level distillation signal during training.
|
647 |
-
|
648 |
-
## WER Filter
|
649 |
-
|
650 |
-
The Whisper pseudo-label predictions are subject to mis-transcriptions and hallucinations. To ensure we only train on
|
651 |
-
accurate pseudo-labels, we employ a simple WER heuristic during training. First, we normalise the Whisper pseudo-labels
|
652 |
-
and the ground truth labels provided by each dataset. We then compute the WER between these labels. If the WER exceeds
|
653 |
-
a specified threshold, we discard the training example. Otherwise, we keep it for training.
|
654 |
-
|
655 |
-
Section 9.2 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430) demonstrates the effectiveness of this filter
|
656 |
-
for improving downstream performance of the distilled model. We also partially attribute Distil-Whisper's robustness to
|
657 |
-
hallucinations to this filter.
|
658 |
-
|
659 |
-
## Training
|
660 |
-
|
661 |
-
The model was trained for 80,000 optimisation steps (or 11 epochs) with batch size 256. The Tensorboard training logs can
|
662 |
-
be found under: https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0/tensorboard?params=scalars#frame
|
663 |
-
|
664 |
-
## Results
|
665 |
-
|
666 |
-
The distilled model performs to within 1.5% WER of Whisper large-v3 on out-of-distribution (OOD) short-form audio, within
|
667 |
-
1% WER on sequential long-form decoding, and outperforms large-v3 by 0.1% on chunked long-form. This performance gain is
|
668 |
-
attributed to lower hallucinations.
|
669 |
-
|
670 |
-
For a detailed per-dataset breakdown of the evaluation results, refer to Tables 16 and 17 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)
|
671 |
-
|
672 |
-
Distil-Whisper is also evaluated on the [ESB benchmark](https://arxiv.org/abs/2210.13352) datasets as part of the [OpenASR leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard),
|
673 |
-
where it performs to within 0.2% WER of Whisper.
|
674 |
|
675 |
-
## Reproducing Kotoba-Whisper
|
676 |
-
Training and evaluation code to reproduce Kotoba-Whisper is available at the repository: [TBA](TBA).
|
677 |
|
678 |
## Acknowledgements
|
679 |
* OpenAI for the Whisper [model](https://huggingface.co/openai/whisper-large-v3).
|
|
|
64 |
we employ OpenAI's [Whisper large-v3](https://huggingface.co/openai/whisper-large-v3) as the teacher model, and the student model that consists the full encoder of the
|
65 |
teacher whisper model, and a decoder with two layers initialized from the first and last layer of the whisper model.
|
66 |
As the initial version, we release ***kotoba-whisper-v1.0*** trained on the `large` subset of [ReazonSpeech](https://huggingface.co/datasets/reazon-research/reazonspeech),
|
67 |
+
which amounts 1,253 hours of audio with 16,861,235 characters of transcriptions (5 sec audio with 18 text tokens in average) after
|
68 |
+
those transcriptions more than 10 WER are removed (see [WER Filter](https://huggingface.co/distil-whisper/distil-large-v3#wer-filter)).
|
69 |
+
The model was trained for 8 epochs with batch size 256 with sampling rate of 16kHz, and the raining and evaluation code to reproduce kotoba-whisper is available at [https://github.com/kotoba-tech/kotoba-whisper](https://github.com/kotoba-tech/kotoba-whisper).
|
70 |
|
71 |
|
72 |
+
Kotoba-whisper-v1.0 achieves better CER and WER than the [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) in the in-domain held-out test set from ReazonSpeech, and
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
achieves competitive CER and WER on the out-of-domain test set including [JSUT basic 5000](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) and
|
74 |
the Japanese subset from [CommonVoice 8.0](https://huggingface.co/datasets/common_voice).
|
75 |
|
76 |
+
|
77 |
+
- ***CER***
|
78 |
|
79 |
| Model | CommonVoice 8.0 (Japanese) | JSUT Basic 5000 | ReazonSpeech Test |
|
80 |
|:------------------------------------------------------------------------------------------------|---------------------------:|----------------:|------------------:|
|
81 |
+
| [**kotoba-tech/kotoba-whisper-v1.0**](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0) **9.44** | **8.48** | **12.60** |
|
82 |
| [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 8.52 | 7.18 | 15.18 |
|
83 |
| [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 11.34 | 9.87 | 29.56 |
|
84 |
| [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 15.26 | 14.22 | 34.29 |
|
85 |
| [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 46.86 | 35.69 | 96.69 |
|
86 |
|
87 |
+
- ***WER***
|
88 |
|
89 |
| Model | CommonVoice 8.0 (Japanese) | JSUT Basic 5000 | ReazonSpeech Test |
|
90 |
|:------------------------------------------------------------------------------------------------|---------------------------:|----------------:|------------------:|
|
91 |
+
| [**kotoba-tech/kotoba-whisper-v1.0**](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0) | **59.27** | **64.36** | **56.62** |
|
92 |
| [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 55.41 | 59.34 | 60.23 |
|
93 |
| [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 63.64 | 69.52 | 76.04 |
|
94 |
| [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 74.21 | 82.02 | 82.99 |
|
95 |
| [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 93.78 | 97.72 | 94.85 |
|
96 |
|
97 |
+
- ***Latency***: As kotoba-whisper uses the same architecture as [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3),
|
|
|
98 |
it inherits the benefit of the improved latency compared to [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3)
|
99 |
(**6.3x faster than large-v3**, see the table below taken from [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)).
|
100 |
|
101 |
+
| Model | Params / M | Rel. Latency |
|
102 |
+
|----------------------------------------------------------------------------------------------|------------|--------------|
|
103 |
| **[kotoba-tech/kotoba-whisper-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0)**| **756** | **6.3** |
|
104 |
+
| [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 1550 | 1.0 |
|
105 |
|
106 |
|
107 |
## Transformers Usage
|
108 |
+
Kotoba-Whisper is supported in the Hugging Face 🤗 Transformers library from version 4.39 onwards. To run the model, first
|
|
|
109 |
install the latest version of Transformers. For this example, we'll also install 🤗 Datasets to load a toy audio dataset
|
110 |
from the Hugging Face Hub:
|
111 |
|
|
|
115 |
```
|
116 |
|
117 |
### Short-Form Transcription
|
|
|
118 |
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
119 |
class to transcribe short-form audio files (< 30-seconds) as follows:
|
120 |
|
|
|
123 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
124 |
from datasets import load_dataset
|
125 |
|
126 |
+
# config
|
|
|
|
|
|
|
127 |
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
128 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
129 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
130 |
|
131 |
+
# load model
|
132 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
|
|
133 |
model.to(device)
|
|
|
134 |
processor = AutoProcessor.from_pretrained(model_id)
|
|
|
135 |
pipe = pipeline(
|
136 |
"automatic-speech-recognition",
|
137 |
model=model,
|
|
|
142 |
device=device,
|
143 |
)
|
144 |
|
145 |
+
# load sample audio
|
146 |
+
dataset = load_dataset("japanese-asr/ja_asr.common_voice_8_0", split="test")
|
147 |
sample = dataset[0]["audio"]
|
148 |
|
149 |
+
# run inference
|
150 |
result = pipe(sample)
|
151 |
print(result["text"])
|
152 |
```
|
153 |
|
154 |
+
- To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
|
155 |
```diff
|
156 |
- result = pipe(sample)
|
157 |
+ result = pipe("audio.mp3")
|
158 |
```
|
159 |
|
160 |
+
- For segment-level timestamps, pass the argument `return_timestamps=True` and return the `"chunks"` output:
|
161 |
```python
|
162 |
result = pipe(sample, return_timestamps=True)
|
163 |
print(result["chunks"])
|
164 |
```
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
### Sequential Long-Form
|
167 |
+
Kotoba-whisper is designed to be compatible with OpenAI's sequential long-form transcription algorithm. This algorithm uses a sliding window for buffered
|
168 |
+
inference of long audio files (> 30-seconds), and returns more accurate transcriptions compared to the [chunked long-form algorithm](#chunked-long-form).
|
|
|
|
|
|
|
169 |
The sequential long-form algorithm should be used in either of the following scenarios:
|
170 |
+
|
171 |
1. Transcription accuracy is the most important factor, and latency is less of a consideration
|
172 |
2. You are transcribing **batches** of long audio files, in which case the latency of sequential is comparable to chunked, while being up to 0.5% WER more accurate
|
173 |
|
174 |
If you are transcribing single long audio files and latency is the most important factor, you should use the chunked algorithm
|
175 |
described [below](#chunked-long-form). For a detailed explanation of the different algorithms, refer to Sections 5 of
|
176 |
+
the [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf). The [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
|
|
|
|
177 |
class can be used to transcribe long audio files with the sequential algorithm as follows:
|
178 |
|
179 |
```python
|
180 |
import torch
|
181 |
+
import numpy as np
|
182 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
183 |
from datasets import load_dataset
|
184 |
|
185 |
+
# config
|
|
|
|
|
|
|
186 |
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
187 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
188 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
189 |
|
190 |
+
# load model
|
191 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
|
|
192 |
model.to(device)
|
|
|
193 |
processor = AutoProcessor.from_pretrained(model_id)
|
|
|
194 |
pipe = pipeline(
|
195 |
"automatic-speech-recognition",
|
196 |
model=model,
|
|
|
201 |
device=device,
|
202 |
)
|
203 |
|
204 |
+
# load sample audio (concatenate instances to creaete a long audio)
|
205 |
+
dataset = load_dataset("japanese-asr/ja_asr.common_voice_8_0", split="test")
|
206 |
+
sample = {"array": np.concatenate([i["array"] for i in dataset[:20]["audio"]]), "sampling_rate": dataset[0]['audio']['sampling_rate'], "path": "tmp"}
|
207 |
|
208 |
+
# run inference
|
209 |
result = pipe(sample)
|
210 |
print(result["text"])
|
211 |
```
|
212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
### Chunked Long-Form
|
215 |
+
This algorithm should be used when a single large audio file is being transcribed and the fastest possible inference is required. In such circumstances,
|
216 |
+
the chunked algorithm is up to 9x faster than OpenAI's sequential long-form implementation (see Table 7 of the [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf)).
|
|
|
|
|
|
|
|
|
217 |
To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For distil-large-v3, a chunk length of 25-seconds
|
218 |
is optimal. To activate batching over long audio files, pass the argument `batch_size`:
|
219 |
|
|
|
222 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
223 |
from datasets import load_dataset
|
224 |
|
225 |
+
# config
|
|
|
|
|
|
|
226 |
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
227 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
228 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
229 |
|
230 |
+
# load model
|
231 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
|
|
232 |
model.to(device)
|
|
|
233 |
processor = AutoProcessor.from_pretrained(model_id)
|
|
|
234 |
pipe = pipeline(
|
235 |
"automatic-speech-recognition",
|
236 |
model=model,
|
|
|
243 |
device=device,
|
244 |
)
|
245 |
|
246 |
+
# load sample audio (concatenate instances to creaete a long audio)
|
247 |
+
dataset = load_dataset("japanese-asr/ja_asr.common_voice_8_0", split="test")
|
248 |
+
sample = {"array": np.concatenate([i["array"] for i in dataset[:20]["audio"]]), "sampling_rate": dataset[0]['audio']['sampling_rate'], "path": "tmp"}
|
249 |
|
250 |
+
# run inference
|
251 |
result = pipe(sample)
|
252 |
print(result["text"])
|
253 |
```
|
254 |
|
|
|
255 |
### Additional Speed & Memory Improvements
|
256 |
+
You can apply additional speed and memory improvements to further reduce the inference speed and VRAM
|
|
|
257 |
requirements. These optimisations primarily target the attention kernel, swapping it from an eager implementation to a
|
258 |
more efficient flash attention version.
|
259 |
|
|
|
296 |
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="sdpa")
|
297 |
```
|
298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
## Model Details
|
301 |
+
See [https://huggingface.co/distil-whisper/distil-large-v3#model-details](https://huggingface.co/distil-whisper/distil-large-v3#model-details).
|
302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
## Evaluation
|
305 |
|
|
|
319 |
|
320 |
```python
|
321 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
322 |
+
from datasets import load_dataset, features
|
323 |
from evaluate import load
|
324 |
import torch
|
325 |
from tqdm import tqdm
|
326 |
|
327 |
+
# config
|
|
|
|
|
|
|
328 |
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
329 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
330 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
331 |
+
audio_column = 'audio'
|
332 |
+
text_column = 'transcription'
|
333 |
+
batch_size = 16
|
334 |
|
335 |
+
# load model
|
336 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
337 |
+
model.to(device)
|
338 |
processor = AutoProcessor.from_pretrained(model_id)
|
339 |
|
340 |
+
# load the dataset and sample the audio with 16kHz
|
341 |
+
dataset = load_dataset("japanese-asr/ja_asr.common_voice_8_0", split="test")
|
342 |
+
dataset = dataset.cast_column(audio_column, features.Audio(sampling_rate=processor.feature_extractor.sampling_rate))
|
343 |
+
dataset = dataset.select([0, 1, 2, 3, 4, 5, 6])
|
344 |
|
345 |
+
# preprocess and batch the dataset
|
|
|
346 |
|
347 |
def inference(batch):
|
348 |
# 1. Pre-process the audio data to log-mel spectrogram inputs
|
349 |
audio = [sample["array"] for sample in batch["audio"]]
|
350 |
input_features = processor(audio, sampling_rate=batch["audio"][0]["sampling_rate"], return_tensors="pt").input_features
|
351 |
input_features = input_features.to(device, dtype=torch_dtype)
|
|
|
352 |
# 2. Auto-regressively generate the predicted token ids
|
353 |
pred_ids = model.generate(input_features, max_new_tokens=128)
|
|
|
354 |
# 3. Decode the token ids to the final transcription
|
355 |
batch["transcription"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
|
356 |
+
batch["reference"] = batch[text_column]
|
357 |
return batch
|
358 |
|
359 |
+
dataset = dataset.map(function=inference, batched=True, batch_size=batch_size)
|
|
|
360 |
|
361 |
+
# iterate over the dataset and run inference
|
362 |
all_transcriptions = []
|
363 |
all_references = []
|
|
|
|
|
364 |
for result in tqdm(dataset, desc="Evaluating..."):
|
365 |
all_transcriptions.append(result["transcription"])
|
366 |
all_references.append(result["reference"])
|
367 |
|
368 |
# normalize predictions and references
|
369 |
+
all_transcriptions = [transcription.replace(" ", "") for transcription in all_transcriptions]
|
370 |
+
all_references = [reference.replace(" ", "") for reference in all_references]
|
|
|
|
|
|
|
|
|
371 |
|
372 |
+
# compute the CER metric
|
373 |
+
cer_metric = load("cer")
|
374 |
+
cer = 100 * cer_metric.compute(predictions=all_transcriptions, references=all_references)
|
375 |
+
print(cer)
|
376 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
|
|
|
|
378 |
|
379 |
## Acknowledgements
|
380 |
* OpenAI for the Whisper [model](https://huggingface.co/openai/whisper-large-v3).
|