korntewin commited on
Commit
303df62
1 Parent(s): 4cefa9b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -156.37 +/- 166.00
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -48.46 +/- 29.84
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f991c2ec4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f991c2ec550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f991c2ec5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f991c2ec670>", "_build": "<function ActorCriticPolicy._build at 0x7f991c2ec700>", "forward": "<function ActorCriticPolicy.forward at 0x7f991c2ec790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f991c2ec820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f991c2ec8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f991c2ec940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f991c2ec9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f991c2eca60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f991c2ecaf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f991c2f0030>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 10, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677915238616566377, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABtCjb4uW68/rPITv5xj8r5cUpM+mEJRvQAAAAAAAAAAAFnCPRILtj8Z6Ys+65itvn3/777gueu9AAAAAAAAAAAzQ1a7MXezP16Oqb7rR8m+17d4O7SgmT0AAAAAAAAAAM28kLrGCpU/NG8QvMuxKL+oyeg9Sq4tPgAAAAAAAAAAZqKCO5KWsz/VtVk9gsP/vV9DCDwnV5o9AAAAAAAAAABGPAY+vaKsP6Ihxj4mV9m+u+S2PXa5Kz4AAAAAAAAAAM0EJz5Ck58/smzzPkJbAb+ElyO+NEXLvAAAAAAAAAAAVq5SvvwALj/AK+m+d32TvykR7z7sH7E8AAAAAAAAAADmFBE+tIWPP0Pc+D5SnTq/KE0aPF1MWD4AAAAAAAAAAG0tID9ow1k/6vaSP7OJWb9ixiS/tLiYPQAAAAAAAAAAJvDqPfJ6mT96sik/WZ9Cv3k/171+9W29AAAAAAAAAADA+t+9KUS9P3LyJr7qXPO+2W4bvmix5L0AAAAAAAAAAE25Sb2pjmQ//VjyvIRZYr/KVWS+q6dgvgAAAAAAAAAAAMuEPWoUqT+nILA+lePkvibIJ71TJ/E8AAAAAAAAAAAA9Dq9IO+qP28nHL/k19i+5eI6PS7XGT4AAAAAAAAAAE1cZT5qkoM/O8zdPi6dNr+/8uo8C+h9PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAQAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1637.4, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXqCkwAI7acCUhpRSlIwBbJRLVIwBdJRHQEmgg1WKdhB1fZQoaAZoCWgPQwhKXTKOkTRawJSGlFKUaBVLOGgWR0BJpwtBfKISdX2UKGgGaAloD0MIe2tgq4QDZcCUhpRSlGgVS05oFkdASahqGlANX3V9lChoBmgJaA9DCOm4GtmVNVnAlIaUUpRoFUtOaBZHQEmqJemelKt1fZQoaAZoCWgPQwjk+KHSCI5qwJSGlFKUaBVLSmgWR0BJq0IkZ75VdX2UKGgGaAloD0MIYORlTSxLWcCUhpRSlGgVS0xoFkdASbCYVqN6xHV9lChoBmgJaA9DCIZZaOc0sVvAlIaUUpRoFUt6aBZHQEm4ImgJ1JV1fZQoaAZoCWgPQwiXAtL+BxZhwJSGlFKUaBVLXmgWR0BJt4BeXzDodX2UKGgGaAloD0MIR8fVyC5CY8CUhpRSlGgVS2toFkdASbnOUt7KJXV9lChoBmgJaA9DCD22ZcDZiGXAlIaUUpRoFUtWaBZHQEnAblRxcVx1fZQoaAZoCWgPQwi6vg8HCVEmQJSGlFKUaBVLR2gWR0BJweQuEmICdX2UKGgGaAloD0MILcxCOyf4YsCUhpRSlGgVS3VoFkdAScEDZDiOvXV9lChoBmgJaA9DCLe0GhL301XAlIaUUpRoFUtDaBZHQEnDjaPCEYh1fZQoaAZoCWgPQwj1aKoncy1rwJSGlFKUaBVLgWgWR0BJxKbrkbPydX2UKGgGaAloD0MI1hpK7UX2V8CUhpRSlGgVS05oFkdASce1F6RhdHV9lChoBmgJaA9DCKpkAKjiKF3AlIaUUpRoFUt1aBZHQEnPNHH3lCF1fZQoaAZoCWgPQwjgY7DiVHphwJSGlFKUaBVLVGgWR0BJ0mxt52QodX2UKGgGaAloD0MIZr/udGfFYMCUhpRSlGgVS0JoFkdASdJ55Z8rqnV9lChoBmgJaA9DCEsd5PVgTWzAlIaUUpRoFUtTaBZHQEnVHFPznRt1fZQoaAZoCWgPQwh/orJhTQlUwJSGlFKUaBVLU2gWR0BJ1jkELYwqdX2UKGgGaAloD0MIXi13ZoLFYMCUhpRSlGgVS3VoFkdASdyInBtUGXV9lChoBmgJaA9DCNwQ4zWvA1PAlIaUUpRoFUs7aBZHQEng85CF9KF1fZQoaAZoCWgPQwj/JD53gl1TwJSGlFKUaBVLQGgWR0BJ5JvP1L8KdX2UKGgGaAloD0MImgewyK/XLsCUhpRSlGgVS3RoFkdASePZqVQhwHV9lChoBmgJaA9DCKxT5XtGfljAlIaUUpRoFUtZaBZHQEnmwu/UONJ1fZQoaAZoCWgPQwjbFmU2yGxdwJSGlFKUaBVLYmgWR0BJ6UFjd56ddX2UKGgGaAloD0MIiSXl7vMTbcCUhpRSlGgVS1VoFkdASevj6vaDf3V9lChoBmgJaA9DCPM5d7teH1rAlIaUUpRoFUtAaBZHQEnzNKyv9tN1fZQoaAZoCWgPQwjGNNO9TvZUwJSGlFKUaBVLOWgWR0BJ8jnNgSezdX2UKGgGaAloD0MIVtXL7zS2U8CUhpRSlGgVS0FoFkdASfPwI+nqFHV9lChoBmgJaA9DCAoUsYhhelfAlIaUUpRoFUs9aBZHQEn1uLJjlPt1fZQoaAZoCWgPQwhBmxw+6adWwJSGlFKUaBVLbmgWR0BJ+N70Fr2ydX2UKGgGaAloD0MIWi2wx0Q1WMCUhpRSlGgVSz5oFkdASf0kOZssQXV9lChoBmgJaA9DCD86deWzEmPAlIaUUpRoFUtUaBZHQEn7OsT37DV1fZQoaAZoCWgPQwjO/kC5bRBawJSGlFKUaBVLiGgWR0BJ/r08NhE0dX2UKGgGaAloD0MIq7TFNT6QaMCUhpRSlGgVS2xoFkdASf+S4e9zwXV9lChoBmgJaA9DCPWhC+pbIFvAlIaUUpRoFUtFaBZHQEoFHI6r/851fZQoaAZoCWgPQwghW5avyzJgwJSGlFKUaBVLlWgWR0BKDkona37UdX2UKGgGaAloD0MIDvj8MEJIL0CUhpRSlGgVS1ZoFkdAShGmk30f5nV9lChoBmgJaA9DCHGTUWWYr2fAlIaUUpRoFUtfaBZHQEoYu7pV0cR1fZQoaAZoCWgPQwh/pl63CFVzwJSGlFKUaBVLW2gWR0BKGUmUnogWdX2UKGgGaAloD0MI4X8r2XEWc8CUhpRSlGgVS2doFkdAShooZydWhnV9lChoBmgJaA9DCNWw3xPrr1XAlIaUUpRoFUtHaBZHQEoa37UG3Wp1fZQoaAZoCWgPQwgyjpHsEeBWwJSGlFKUaBVLT2gWR0BKHYEnssxxdX2UKGgGaAloD0MIjgWFQZnhXMCUhpRSlGgVS1hoFkdASiGajN6gNHV9lChoBmgJaA9DCELuIkzRKW7AlIaUUpRoFUtJaBZHQEoh1jiGWUt1fZQoaAZoCWgPQwgGDmjpCjhgwJSGlFKUaBVLTmgWR0BKJ7aRISUUdX2UKGgGaAloD0MIQup29pUMWsCUhpRSlGgVS0BoFkdASie/pMYdhnV9lChoBmgJaA9DCH+FzJVBHmHAlIaUUpRoFUtMaBZHQEooc6NlyzZ1fZQoaAZoCWgPQwiXyAVn8NNYwJSGlFKUaBVLWGgWR0BKLDTBqKxcdX2UKGgGaAloD0MIfNP02YEgaMCUhpRSlGgVS3hoFkdASiwvJzT4L3V9lChoBmgJaA9DCERN9PkoZmPAlIaUUpRoFUtsaBZHQEosUh3aBZp1fZQoaAZoCWgPQwi4yagyDPBgwJSGlFKUaBVLb2gWR0BKM5byH2ytdX2UKGgGaAloD0MIm8k329wAWsCUhpRSlGgVSz5oFkdASjr+xW1c+3V9lChoBmgJaA9DCNF2TN2V8FTAlIaUUpRoFUtZaBZHQEpAYc/+sHV1fZQoaAZoCWgPQwgGTODWXWVnwJSGlFKUaBVLamgWR0BKRdP1tfoidX2UKGgGaAloD0MIwXCuYYaUZ8CUhpRSlGgVS11oFkdASklkxyn1nXV9lChoBmgJaA9DCFIq4Qk9bG7AlIaUUpRoFUtcaBZHQEpJa+N96Tp1fZQoaAZoCWgPQwgo8E4+PZlnwJSGlFKUaBVLUmgWR0BKTC0F8ohIdX2UKGgGaAloD0MIrOY5It85XcCUhpRSlGgVS15oFkdASlL7fpD/l3V9lChoBmgJaA9DCMKiIk6n5GvAlIaUUpRoFUtkaBZHQEpR/kNnXd11fZQoaAZoCWgPQwgVi98UVnlcwJSGlFKUaBVLUWgWR0BKVcmrsByTdX2UKGgGaAloD0MIpb4s7dTCZcCUhpRSlGgVS0hoFkdASlj2vjfelHV9lChoBmgJaA9DCEjDKXPza1XAlIaUUpRoFUtRaBZHQEpV+1jRUm51fZQoaAZoCWgPQwibN04K8wdcwJSGlFKUaBVLX2gWR0BKWZSeiBXkdX2UKGgGaAloD0MInWSryylGY8CUhpRSlGgVS3xoFkdASltsi0OVgXV9lChoBmgJaA9DCBaInpRJjWXAlIaUUpRoFUtsaBZHQEpjYPGyX2N1fZQoaAZoCWgPQwiPUglP6FVLwJSGlFKUaBVLdmgWR0BKZKs2eg+RdX2UKGgGaAloD0MIrimQ2dnZZsCUhpRSlGgVS3poFkdASmb28IzFdnV9lChoBmgJaA9DCJmEC3mEnHfAlIaUUpRoFUtpaBZHQEpyidrftQd1fZQoaAZoCWgPQwgwf4XMlVJcwJSGlFKUaBVLUWgWR0BKdGyon8badX2UKGgGaAloD0MITRB1H4D1UsCUhpRSlGgVSzloFkdASndqL0jC53V9lChoBmgJaA9DCFb0h2aeRWHAlIaUUpRoFUtmaBZHQEp22w3YL9d1fZQoaAZoCWgPQwhGsdzSaotewJSGlFKUaBVLYGgWR0BKeU0WM0gsdX2UKGgGaAloD0MIQBcNGY/qZsCUhpRSlGgVS1VoFkdASnmi8Fpwj3V9lChoBmgJaA9DCCygUE+fHWTAlIaUUpRoFUtKaBZHQEqASlFc6eZ1fZQoaAZoCWgPQwigwDv59DBSwJSGlFKUaBVLS2gWR0BKg1ZcLSeAdX2UKGgGaAloD0MIdv2C3bBpXsCUhpRSlGgVS1doFkdASoQnSfDk2nV9lChoBmgJaA9DCI7pCUs8GFTAlIaUUpRoFUtmaBZHQEqJhLGrCFd1fZQoaAZoCWgPQwgstklFY0lnwJSGlFKUaBVLbmgWR0BKkLUsnRb9dX2UKGgGaAloD0MI8RKc+sDtaMCUhpRSlGgVS1FoFkdASo/Dk2gnMXV9lChoBmgJaA9DCPfnoiHjMUHAlIaUUpRoFUuEaBZHQEqQqNp/PPd1fZQoaAZoCWgPQwi77xgee1BiwJSGlFKUaBVLfGgWR0BKlK1PWQOndX2UKGgGaAloD0MIpgpGJXX2VsCUhpRSlGgVS0NoFkdASp0tGus90XV9lChoBmgJaA9DCLnhd9MtxmLAlIaUUpRoFUtNaBZHQEqd420iQkp1fZQoaAZoCWgPQwisVib8UoJewJSGlFKUaBVLVGgWR0BKn/hESdvsdX2UKGgGaAloD0MIUG1wIvpwaMCUhpRSlGgVS3BoFkdASqExyn1nNHV9lChoBmgJaA9DCPEr1nCRkV7AlIaUUpRoFUtNaBZHQEqqIQe3hGZ1fZQoaAZoCWgPQwi1qbpHNmRcwJSGlFKUaBVLRWgWR0BKqblzU7SzdX2UKGgGaAloD0MIz2dAvRkEXsCUhpRSlGgVS4BoFkdASqzPnjhky3V9lChoBmgJaA9DCNb+zvbovV7AlIaUUpRoFUtoaBZHQEqv9ycTakB1fZQoaAZoCWgPQwjqCOBmccZxwJSGlFKUaBVLbmgWR0BKsxh2GIsRdX2UKGgGaAloD0MI0y8Rb534VMCUhpRSlGgVS0VoFkdASrb48EFGG3V9lChoBmgJaA9DCK6CGOjaIWHAlIaUUpRoFUtIaBZHQEq6tMfzSTh1fZQoaAZoCWgPQwiXOPJAZAJSwJSGlFKUaBVLP2gWR0BKujrJKaoddX2UKGgGaAloD0MIn8vUJHjqXsCUhpRSlGgVS2ZoFkdASsB/RVp9JHV9lChoBmgJaA9DCIXsvI3N5l3AlIaUUpRoFUtQaBZHQErBkvsZ5zJ1fZQoaAZoCWgPQwh15EhnYPxTwJSGlFKUaBVLgmgWR0BKyAEMb3oLdX2UKGgGaAloD0MIXr71Yb2uW8CUhpRSlGgVS0ZoFkdASswlQdjoZHV9lChoBmgJaA9DCBuFJLN6f27AlIaUUpRoFUtwaBZHQErP6iTMaCN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 8, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f367a4e20d0>", "_build": "<function DQNPolicy._build at 0x7f367a4e2160>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f367a4e21f0>", "forward": "<function DQNPolicy.forward at 0x7f367a4e2280>", "_predict": "<function DQNPolicy._predict at 0x7f367a4e2310>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f367a4e23a0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f367a4e2430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f367a4dc510>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAmLukaINf+xiVXXvS7ogOaYa8zCTLFsBdK1i0Jd0J7RQC97OwHo1V/Ky1uw7hZ/FS99v/7lo+sbnb1QpP6DkWS7+gfdflN2C7h+jdUjbNhkkbnUe6Uv1SY9/Pu1Jm2fjfifW3Ef/LkRillL/C0ZVEK1cdDYe/tHWcNFjNCaEpDyvV9Bp2pEo561tvOMmmS92TZVoLTRNTB1fx8lHZveYUhSVp48fUTGkCGi/NKBYwbvvHUY2KS2TccWxQ0lys1oQFOjoGaMYVDSlLq1aOD1kFiC30BSHxoZ0A93k4niblA1lB5WOFHZFSlSosr1BqID3R0WSzmK1ftG5ySf0CikAuNxDlp+07MVRpHb2qzgKsRrrKlDsf8pNTqrKiH7mOx+Y3mNZCs/TWbgqRBg00gtgi2J/xwxiFPnq1ODsPs7cev4BtneNiuXkZp9Ir/WPm5WTfXbyhEOiCei42KlmBMj26ALm94oLoIZAhIQgMYHxqfYlfZpqVFZwb2awjvrFJVurXf3UjLT5ToIz+gseqHhiGG82em25I3eobfyLJ2Ua2Mnqhvx3raY/ts+SLD+jqMmH4dU7gfm9ulqhHt3T/eNQrWRZUOa1TM5jy6PRqfqMwvPsVLNQ2P0M0EfxQe3uBzsaiAE28cd3T0H2gwD0InRiJT4qjbOVEq9YZUjW6Oo+kvMsmkVXK/nayTLzq/E1o9j+/wDcf3VqsG9C2dzRQF+ZdokHx7MIgxlIPuqiJna+AVUrL9cMqUQnpud9ZK1gf/wKhOCQ1/x50uOKuBuHAWEOU8igkp01o5tlksCbeqay/dwmmONTihO0uPjNNvyGVo0SCsjaUiV7iUuKHTtN9+g5sNOEg8j/bQml1A4gbFszlIAgNvL2HG0OTCJyDrUjpUI9Gi0m9pJUkNt6aibaT6aWlpaIcBDOj208aP14WNCZf/Osy9Qs4f3N1jkj0BFenWy5XvaIurWgi3x6JmePOYYL5hWBFoDrpR+IwMYQ9cahsJzqQcMC4rihq8dYYqvl+HnYP4Kznl9KedjofaP9nnUASl89zzIQyx4BfJwBRy1P2AVEZc7SRA/cdyKlPXU8cwojCWcJzOPX2rYEGivWOiJHE3/thquexRZrYA10CJ34klYxqgCqxfmakz0AXUvB2M0MFPLNz1moEFjSuWOM4TDWMW+q3P1XtcbmSWlGhU1/AmPytk1WwET/GKLZIJafZedl/f1GMzX0B7VRkLhPyHIhCahYwCAXNAqlDo9Q/MH1/LYi5JrBxJUn0C6r4+lGvhvhL2RJBkkJc4hadVmMi9BLpcnvb/P8fUTN5T0zqB9rKy1VCtbqWYFAltb8fA3oIyBmcVyanYgjMlEVIO8khFxum0QGcCBpPXLzXl27UIJmEh9rNaVeDcLGP4YQFAMy6ZZedqxLpGf04Nf3XTa8YJw6fGmzruKOF4M63xHJKnK9mh7fL21xLynLGQRdcLcXd7277Ulm+bjt1OCINJ/jR2wo9+FkCwD/mVG1jH3ftde/coBRrUCgj0fulXT4E0E5SgmFOpUhUisifzeLvO66a7IvpqHhp4P6FKRBIvJu+X2MmGsWY+HH7vrkyb2h2/XsShCasgfi3rhMDkQCcy4dNX0lojt3ef6INnSLKJ6ivBT6+Tb86hvy/d+oW0sdPxnJkF7YbUOY3GXRGDtCXuYykxYWlBzLDzj1b1f7DqHp/v0FPc0p8TpKEpZIh1G2ZUgjglhSC33IJAJ5RRbankcJupaKMZAkNnPC+sBPvn3lAOfKMNB0cdeNv8qvkNrIY43W+uDp7IQvkFlDM+JR1h1WzTIiIica4ikhgphBUBLSKkhSihiduBF6jPaf/YBwUzz7K5M/VgNGMMLBqcwzO7m75/MrKozXm6awvsfHYytjXeC6gfcMurDA2NhiT60KYuM3wUGUDa+EkPK58kkzWGrjfRhqrOZfQGfRtiOO5OG40LMiSHbAyviTuuxSsMu1sE21e9a52MjK/nLg+I1u4Kdz2s6ByhV/pbdQMMznuwiKv6EBzxQXlwx/tnjjIQBX9H9Lqz2RbB6oX4ALiwCC8TVPA+Bwb21GLndqzolmip0piZE7LxH4G/nS+tkjxcAo7p9bGfHTzRUv5/fbtajx4dTAmTy4XmJH0B4yqeu1Kn8vp0JIQqF9ydtNO5NFXlL84wgdayFPn3Di4s7d3ceuxryiNLFy8u06DKZw/CoIkxghSy95ndeIxIqlehWsTVNU9FX6jGqDhvwTbG92j1GT61+msSjE7eCUtO234CmWrHt+0YgWJSHYYGIWVq/BB55UCO2YaXP7DsODeN02x95Vfxb5/aEJWZeZJqDIq6V17bc3DFUmiIqWNDRevoEk3FI+k0A4u7KQuSOaj+tuKuuXCogzSo2H4U5iPZB+X92nBfu0pNOYkodMwmR7rGxSCMYsjpb2oBObAmcrfJprsyC8V0Ha8dhuc4jSL+A+j3n08aw8BQDz59ClGvAKFkaqodqno7oQdTsvw+B4dUn+0nNn29yxQ2/h6ByVGrBzjUQPQ5qNAarD0MwqJIpduaZsCBeTvBu9hyuRM5kfW2rRgOE7y8wB+RJOYy9Mpf+X2Gz5ibdXiNlMZSxM4zLys+XEZ+xmiE12AIT4SsjmhlFvNniiIYh/tsWB1XSgB4wls6GJn28nhQEcCvxh5vYEo7tNOVqDFS1nVXYXcJOuFV6QJ/PAsG6rsrM9cRRMdisbz4PaSEIfbk72OCBJaWA9VY9UEWgdYX1sFFBzoUIhRO6CAS4xsniQ+FhsyEao/WRlnFNwiwPgeX5keFfKY3Tl5mqmWERbyXKYAqcSBRYsHZauYhDsfCQLHLKVUQChfAkxFyO2Z5pJEHiM48cvdDLGhewBz9qL6Cky9wMVu222vvUKVrLbUUCL0UU88c5Key+rCChX2GQkfSiCXRDkFWx4mCqax4Fmg/tEeoZQVVj+4Dk90ILbWqsKX3YKKzxpIbekQEtjKzU8U/3FQ42nvMQeV+yTqnjcCAFoq5+LYJrOgRpO6S+o8VPVQDiOplDdLUoNUI+sbJMeUv/mTA946Diu4LKa9Rl8dRhD5CDVMk7p5QPu5y4R0TbYkD5nyRks8mQLXZdxBcxQOpBksab0raTtjWN1lDtD1MUjdiUvBHGPlTS7vf61pyOm0tHqSjomqJDO5nXW+dIh8gsKbMHUdIOhj5ObCneQpT+SLCC9tQSYrFsCQoOBJHcbklk4O9l65BvVwZQFk201m5Hc3L1sBONP7AfilR9phQQ3PbY24gKrluXbvXBojr9LUeANoBFOvnmtRmPXyp0nT/L0pU28Opmr6YOaO8IiuKhuJFquJlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RL8HWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": 191, "action_noise": null, "start_time": 1677919569240831047, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABOGgz5Pun89jLwpvSRzQ72frhC9Dq8NvQAAAAAAAAAAlhebPqJJHD97ab47y5kCvXK6DL1D++Y8AAAAAAAAAABNZ0M9DrINP3vfWTpgu3W7yJHSvLe5m7wAAAAAAAAAABPPAz4bzSI/RHCLvJ01Er0CRL29fjXbOwAAAAAAAAAAU/kkPhrbhT+brjW8Po4UvQ2Qlr32hu07AAAAAAAAAAAzMwk4ZdFxP/p6ZDohRgy9eDSnvRhM5rgAAAAAAAAAALNwTz6fIzw/auIwPcPGfrzxKAw8MEyAOwAAAAAAAAAAs7PKPZQZhj/rJXw9vbcEvbpE7jy7XXI8AAAAAAAAAADAIuI94y5QP0q/+jxPWqO8tLQvvVpWy7wAAAAAAAAAAJDmVL78PPI+OS6/Pbtb0r22Gei9sNpWPgAAAAAAAAAA7e9cPrtysD6Sm2y956g2vU6xkL3ykWG9AAAAAAAAAABgD2A+E1RFPwrOobyncK28JuUmvUALjDsAAAAAAAAAAGa/H72jh3Y/cDxzPbLlc70hFpy8eojWPAAAAAAAAAAAgJRQPmvlVT8FYlA9r6TivOAJLD0/Vg88AAAAAAAAAABjt5w+DnwWP4jZFr0Xj+U7fE1ovZ7We70AAAAAAAAAAHOL5T2968c+EFDuPE6ofrxUaje8gk1nPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK2+gz6UD4I9f75KvctJqrwRmQm9PokUuwAAAAAAAAAAGg6bPrR4HD/AnzM8ngwhvbiAEr09NQ89AAAAAAAAAACzaEM9kLcNPwoQKjy9KgC9hcjKvCbk/rsAAAAAAAAAANP6Az7EASM/aCLYvB5CEbxh8729uco0PQAAAAAAAAAAcxUlPtr1hT/ocvu6JUIevBROl72Q8/C8AAAAAAAAAACamck35gNyPwD7JDzmkQe8lTGnvW6aGL0AAAAAAAAAAPr+Tj6LOjw/3U0nPYpC07zP8wg8EU2dOgAAAAAAAAAADW3JPXMxhj+GfYA9XfQTvZk16Dyek3A8AAAAAAAAAADNiOE9PkxQPwJAjTxLwOq8VJ8qvdPyEb0AAAAAAAAAAO32Vb5ibvM+8uOlPashmr36lf29pu6EPgAAAAAAAAAApo5dPt71sD7iCUC9x08tvagNi71yliy9AAAAAAAAAACTQmA+TXNFP4sxIbw/hZw7NcUnvQXnEb0AAAAAAAAAAAA8Ir1533Y/ln9LPQRvBL0n0Ka8tl6FPQAAAAAAAAAA+g1QPjMOVj9GY489a6EavTU/Kj0+fc08AAAAAAAAAAC965w+jnEWP9V2Xb1nywi99rVbvX5ulb0AAAAAAAAAADPv5D2VGcg+BdwePUxlHL0J+0K8a8fHPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 3689, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0LaadcZSWMCUhpRSlIwBbJRN6AOMAXSUR0CnRnldTo+wdX2UKGgGaAloD0MIz/dT46UnScCUhpRSlGgVTegDaBZHQKdITDb8FZB1fZQoaAZoCWgPQwj6CtKMRZFHwJSGlFKUaBVN6ANoFkdAp1gm4kNWl3V9lChoBmgJaA9DCNf6IqEtkU3AlIaUUpRoFU3oA2gWR0CnWa1bzK9xdX2UKGgGaAloD0MIjdXm/1XPL8CUhpRSlGgVTegDaBZHQKdZ2py6tkp1fZQoaAZoCWgPQwjtDikGSG5cwJSGlFKUaBVN6ANoFkdAp1p1y3kPtnV9lChoBmgJaA9DCI47pYP1RlzAlIaUUpRoFU3oA2gWR0CnW7UlZ5iWdX2UKGgGaAloD0MIPYBFfv3aVMCUhpRSlGgVTegDaBZHQKdlVQemvW91fZQoaAZoCWgPQwgxfhr35gc6wJSGlFKUaBVN6ANoFkdAp2fSNhmXgXV9lChoBmgJaA9DCPHW+bfL/lnAlIaUUpRoFU3oA2gWR0CnZ/W6shgWdX2UKGgGaAloD0MIhzJUxVRRVcCUhpRSlGgVTegDaBZHQKdqRnvlU6x1fZQoaAZoCWgPQwj1Se6wiUg1wJSGlFKUaBVN6ANoFkdAp2wVOVPepHV9lChoBmgJaA9DCH2W58HdrUfAlIaUUpRoFU3oA2gWR0Cnc5efywwCdX2UKGgGaAloD0MItrqcEhBzQMCUhpRSlGgVTegDaBZHQKd01vZRKpV1fZQoaAZoCWgPQwhYjpCBPBsHwJSGlFKUaBVN6ANoFkdAp3cHXTVlPXV9lChoBmgJaA9DCMyWrIpwAVXAlIaUUpRoFU3oA2gWR0CneA8n3L3cdX2UKGgGaAloD0MIP/1nzY+PG8CUhpRSlGgVTegDaBZHQKd93rTpgTh1fZQoaAZoCWgPQwi8Wu7MBMVLwJSGlFKUaBVN6ANoFkdAp39Z53Tuv3V9lChoBmgJaA9DCBgip6/n60LAlIaUUpRoFU3oA2gWR0Cnj7YU34sVdX2UKGgGaAloD0MIob/QI0bMU8CUhpRSlGgVTegDaBZHQKeRVFRYRul1fZQoaAZoCWgPQwiTOgFNhFVBwJSGlFKUaBVN6ANoFkdAp5GI55qubXV9lChoBmgJaA9DCE5BfjZyi1HAlIaUUpRoFU3oA2gWR0Cnki8k2P1ddX2UKGgGaAloD0MIu2QcI9lLNsCUhpRSlGgVTegDaBZHQKeTkZ0CA+Z1fZQoaAZoCWgPQwjog2Vs6FBAwJSGlFKUaBVN6ANoFkdAp55ejXWe6XV9lChoBmgJaA9DCOPHmLuW8ETAlIaUUpRoFU3oA2gWR0CnoMiLl3hXdX2UKGgGaAloD0MIjZyFPe1gKsCUhpRSlGgVTegDaBZHQKeg7ErGza91fZQoaAZoCWgPQwhwXwfOGYZdwJSGlFKUaBVN6ANoFkdAp6OMdtEXtXV9lChoBmgJaA9DCBO7trdbxkrAlIaUUpRoFU3oA2gWR0CnpYsfzSThdX2UKGgGaAloD0MI+DJRhNTVTMCUhpRSlGgVTegDaBZHQKexkcvM8ox1fZQoaAZoCWgPQwjPEI5Z9ulcwJSGlFKUaBVN6ANoFkdAp7MBf0Eov3V9lChoBmgJaA9DCJELzuDv5FXAlIaUUpRoFU3oA2gWR0CntaL876pHdX2UKGgGaAloD0MIjZsaaD5bQMCUhpRSlGgVTegDaBZHQKe2wCJXQt11fZQoaAZoCWgPQwhNSkG3l35DwJSGlFKUaBVN6ANoFkdAp70o5o4+83V9lChoBmgJaA9DCFU01v7OnjlAlIaUUpRoFU3oA2gWR0CnvviiZfD2dX2UKGgGaAloD0MIjspN1NL8WcCUhpRSlGgVTegDaBZHQKfP9aJyhi91fZQoaAZoCWgPQwgN5NnlW5FSwJSGlFKUaBVN6ANoFkdAp9GRXjlxO3V9lChoBmgJaA9DCJi+1xAcXVHAlIaUUpRoFU3oA2gWR0Cn0cHJT2nLdX2UKGgGaAloD0MIa9eEtMbMPMCUhpRSlGgVTegDaBZHQKfSWTibUgB1fZQoaAZoCWgPQwjlC1pIwKgTwJSGlFKUaBVN6ANoFkdAp9O6S/0ulHV9lChoBmgJaA9DCA5pVOBkPzDAlIaUUpRoFU3oA2gWR0Cn3uVFQVKxdX2UKGgGaAloD0MIDW0ANiDeUMCUhpRSlGgVTegDaBZHQKfhfqu8sc11fZQoaAZoCWgPQwiimSfXFJ1SwJSGlFKUaBVN6ANoFkdAp+Get6ol2XV9lChoBmgJaA9DCPUqMjogx1TAlIaUUpRoFU3oA2gWR0Cn4/CcXm/4dX2UKGgGaAloD0MIkYE8u3y7UcCUhpRSlGgVTegDaBZHQKfllDjzZpV1fZQoaAZoCWgPQwghBU8hV2NWwJSGlFKUaBVN6ANoFkdAp+z2De0ojXV9lChoBmgJaA9DCFcju9IywkXAlIaUUpRoFU3oA2gWR0Cn7kjgydnTdX2UKGgGaAloD0MIKo2Y2eemVsCUhpRSlGgVTegDaBZHQKfwvzvJA+p1fZQoaAZoCWgPQwhh4Ln3cE5RwJSGlFKUaBVN6ANoFkdAp/HY065oXnV9lChoBmgJaA9DCGw9QzhmgU7AlIaUUpRoFU3oA2gWR0Cn+BYY77sOdX2UKGgGaAloD0MIVg+Yh8x8akCUhpRSlGgVTdQCaBZHQKf5K5/b0vp1fZQoaAZoCWgPQwju6eqOxVYxwJSGlFKUaBVN6ANoFkdAp/ncYfnwHHV9lChoBmgJaA9DCPUSY5l+lVHAlIaUUpRoFU3oA2gWR0CoCqJiiItUdX2UKGgGaAloD0MICkrRyr3WSsCUhpRSlGgVTegDaBZHQKgMafywwCd1fZQoaAZoCWgPQwgbLnJPVwtTwJSGlFKUaBVN6ANoFkdAqA0XQla8pXV9lChoBmgJaA9DCAIPDCB8ukfAlIaUUpRoFU3oA2gWR0CoDrWNNrTIdX2UKGgGaAloD0MIIqmFkslbSsCUhpRSlGgVTegDaBZHQKgb7E1l5GB1fZQoaAZoCWgPQwgTgH9KlTpIwJSGlFKUaBVN6ANoFkdAqB7s3sHB13V9lChoBmgJaA9DCJ/Ik6RrljrAlIaUUpRoFU3oA2gWR0CoHxIPsiSrdX2UKGgGaAloD0MI9S1zuizSWsCUhpRSlGgVTegDaBZHQKghWU/wAlx1fZQoaAZoCWgPQwhmpN5TOYdOQJSGlFKUaBVN6ANoFkdAqCLHZuhsZnV9lChoBmgJaA9DCLOZQ1ILxGRAlIaUUpRoFU3lAmgWR0CoKc10Lc9GdX2UKGgGaAloD0MIQup29pVvKcCUhpRSlGgVTegDaBZHQKgqYMWoFV11fZQoaAZoCWgPQwhQHEC/7+BQwJSGlFKUaBVN6ANoFkdAqCutRm9QGnV9lChoBmgJaA9DCPHxCdl5d1BAlIaUUpRoFU3oA2gWR0CoLa1bRne0dX2UKGgGaAloD0MICK2HLxMrUMCUhpRSlGgVTegDaBZHQKguiBkI5YJ1fZQoaAZoCWgPQwjePqvMlLI4wJSGlFKUaBVN6ANoFkdAqDNqXt0FKXV9lChoBmgJaA9DCH0FacaiD1HAlIaUUpRoFU3oA2gWR0CoNDl4s3AEdX2UKGgGaAloD0MIeo7IdykdNsCUhpRSlGgVTegDaBZHQKhCuF2V3Ux1fZQoaAZoCWgPQwjDoEyjyQ1KwJSGlFKUaBVN6ANoFkdAqEQkxdpqRHV9lChoBmgJaA9DCMWrrG2KjUnAlIaUUpRoFU3oA2gWR0CoRLZYPoV3dX2UKGgGaAloD0MI2bCmsih0JcCUhpRSlGgVTegDaBZHQKhGBt+Csfd1fZQoaAZoCWgPQwjAX8yWrB5TwJSGlFKUaBVN6ANoFkdAqE/wgTyrgnV9lChoBmgJaA9DCLe3W5ID0lLAlIaUUpRoFU3oA2gWR0CoUbrL6k6+dX2UKGgGaAloD0MIJCpUNxcLOMCUhpRSlGgVTegDaBZHQKhRz4dp7C11fZQoaAZoCWgPQwi8XMR3YntUwJSGlFKUaBVN6ANoFkdAqFQ1TkyULXV9lChoBmgJaA9DCAQfgxWnzjHAlIaUUpRoFU3oA2gWR0CoVf0VrRBvdX2UKGgGaAloD0MIXYjVH2FoQsCUhpRSlGgVTegDaBZHQKheWGTLW7R1fZQoaAZoCWgPQwjWkLjH0vcUwJSGlFKUaBVN6ANoFkdAqF7wFkhA4XV9lChoBmgJaA9DCOzZc5masEBAlIaUUpRoFU3oA2gWR0CoYB30f5k9dX2UKGgGaAloD0MIa0qyDkfHVcCUhpRSlGgVTegDaBZHQKhiOHHFPzp1fZQoaAZoCWgPQwjtgywLJh4fwJSGlFKUaBVN6ANoFkdAqGMrqhUR4HV9lChoBmgJaA9DCFSsGoS50UZAlIaUUpRoFU3oA2gWR0CoaM7iZOSGdX2UKGgGaAloD0MIwAMDCB8CSMCUhpRSlGgVTegDaBZHQKhpv62v0RR1fZQoaAZoCWgPQwh4gCctXJJEQJSGlFKUaBVL2GgWR0Coafu2RaHLdX2UKGgGaAloD0MIP4178xszUMCUhpRSlGgVTegDaBZHQKh6bqzqrzZ1fZQoaAZoCWgPQwjoFU890s9RwJSGlFKUaBVN6ANoFkdAqHw7iIcin3V9lChoBmgJaA9DCLMmFviKn1PAlIaUUpRoFU3oA2gWR0CofP4PwuuidX2UKGgGaAloD0MI8Uv9vKlQS8CUhpRSlGgVTegDaBZHQKh+pv2oNut1fZQoaAZoCWgPQwhq9kArMHJFwJSGlFKUaBVN6ANoFkdAqItYg5imVXV9lChoBmgJaA9DCE1mvK30NEbAlIaUUpRoFU3oA2gWR0Cojen1e0HAdX2UKGgGaAloD0MI6YGPwYq5RsCUhpRSlGgVTegDaBZHQKiOEAVfu1F1fZQoaAZoCWgPQwgOwAZEiCNGwJSGlFKUaBVN6ANoFkdAqJDwudwvQHV9lChoBmgJaA9DCFGHFW75w1DAlIaUUpRoFU3oA2gWR0CokxjLjghsdX2UKGgGaAloD0MI22tB743RI8CUhpRSlGgVTegDaBZHQKicVXYlIEt1fZQoaAZoCWgPQwjMYIxIFEhOwJSGlFKUaBVN6ANoFkdAqJ0OxnnMdXV9lChoBmgJaA9DCL5p+uyAtVDAlIaUUpRoFU3oA2gWR0CooTYDDCP7dX2UKGgGaAloD0MI6/8c5svzO8CUhpRSlGgVTegDaBZHQKiib+wTufF1fZQoaAZoCWgPQwgTQ3IycRdWwJSGlFKUaBVN6ANoFkdAqKkb4tYjjnV9lChoBmgJaA9DCM0C7Q4prkvAlIaUUpRoFU3oA2gWR0CoqiEzXSSedX2UKGgGaAloD0MIY2GInL4yN8CUhpRSlGgVTegDaBZHQKiqfZ4fOlh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30469, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f367a51cb80>", "add": "<function ReplayBuffer.add at 0x7f367a51cc10>", "sample": "<function ReplayBuffer.sample at 0x7f367a51cca0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f367a51cd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f367a5243f0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 625, "_n_calls": 125000, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcEMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
dqn-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2011023632acda26c32e149336e43b90ae179223ebb605007f8bb80728458407
3
+ size 110536
dqn-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
dqn-LunarLander-v2/data ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7f367a4e20d0>",
8
+ "_build": "<function DQNPolicy._build at 0x7f367a4e2160>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7f367a4e21f0>",
10
+ "forward": "<function DQNPolicy.forward at 0x7f367a4e2280>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7f367a4e2310>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f367a4e23a0>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f367a4e2430>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc_data object at 0x7f367a4dc510>"
16
+ },
17
+ "verbose": 0,
18
+ "policy_kwargs": {},
19
+ "observation_space": {
20
+ ":type:": "<class 'gym.spaces.box.Box'>",
21
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
22
+ "dtype": "float32",
23
+ "_shape": [
24
+ 8
25
+ ],
26
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
27
+ "high": "[inf inf inf inf inf inf inf inf]",
28
+ "bounded_below": "[False False False False False False False False]",
29
+ "bounded_above": "[False False False False False False False False]",
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
34
+ ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAmLukaINf+xiVXXvS7ogOaYa8zCTLFsBdK1i0Jd0J7RQC97OwHo1V/Ky1uw7hZ/FS99v/7lo+sbnb1QpP6DkWS7+gfdflN2C7h+jdUjbNhkkbnUe6Uv1SY9/Pu1Jm2fjfifW3Ef/LkRillL/C0ZVEK1cdDYe/tHWcNFjNCaEpDyvV9Bp2pEo561tvOMmmS92TZVoLTRNTB1fx8lHZveYUhSVp48fUTGkCGi/NKBYwbvvHUY2KS2TccWxQ0lys1oQFOjoGaMYVDSlLq1aOD1kFiC30BSHxoZ0A93k4niblA1lB5WOFHZFSlSosr1BqID3R0WSzmK1ftG5ySf0CikAuNxDlp+07MVRpHb2qzgKsRrrKlDsf8pNTqrKiH7mOx+Y3mNZCs/TWbgqRBg00gtgi2J/xwxiFPnq1ODsPs7cev4BtneNiuXkZp9Ir/WPm5WTfXbyhEOiCei42KlmBMj26ALm94oLoIZAhIQgMYHxqfYlfZpqVFZwb2awjvrFJVurXf3UjLT5ToIz+gseqHhiGG82em25I3eobfyLJ2Ua2Mnqhvx3raY/ts+SLD+jqMmH4dU7gfm9ulqhHt3T/eNQrWRZUOa1TM5jy6PRqfqMwvPsVLNQ2P0M0EfxQe3uBzsaiAE28cd3T0H2gwD0InRiJT4qjbOVEq9YZUjW6Oo+kvMsmkVXK/nayTLzq/E1o9j+/wDcf3VqsG9C2dzRQF+ZdokHx7MIgxlIPuqiJna+AVUrL9cMqUQnpud9ZK1gf/wKhOCQ1/x50uOKuBuHAWEOU8igkp01o5tlksCbeqay/dwmmONTihO0uPjNNvyGVo0SCsjaUiV7iUuKHTtN9+g5sNOEg8j/bQml1A4gbFszlIAgNvL2HG0OTCJyDrUjpUI9Gi0m9pJUkNt6aibaT6aWlpaIcBDOj208aP14WNCZf/Osy9Qs4f3N1jkj0BFenWy5XvaIurWgi3x6JmePOYYL5hWBFoDrpR+IwMYQ9cahsJzqQcMC4rihq8dYYqvl+HnYP4Kznl9KedjofaP9nnUASl89zzIQyx4BfJwBRy1P2AVEZc7SRA/cdyKlPXU8cwojCWcJzOPX2rYEGivWOiJHE3/thquexRZrYA10CJ34klYxqgCqxfmakz0AXUvB2M0MFPLNz1moEFjSuWOM4TDWMW+q3P1XtcbmSWlGhU1/AmPytk1WwET/GKLZIJafZedl/f1GMzX0B7VRkLhPyHIhCahYwCAXNAqlDo9Q/MH1/LYi5JrBxJUn0C6r4+lGvhvhL2RJBkkJc4hadVmMi9BLpcnvb/P8fUTN5T0zqB9rKy1VCtbqWYFAltb8fA3oIyBmcVyanYgjMlEVIO8khFxum0QGcCBpPXLzXl27UIJmEh9rNaVeDcLGP4YQFAMy6ZZedqxLpGf04Nf3XTa8YJw6fGmzruKOF4M63xHJKnK9mh7fL21xLynLGQRdcLcXd7277Ulm+bjt1OCINJ/jR2wo9+FkCwD/mVG1jH3ftde/coBRrUCgj0fulXT4E0E5SgmFOpUhUisifzeLvO66a7IvpqHhp4P6FKRBIvJu+X2MmGsWY+HH7vrkyb2h2/XsShCasgfi3rhMDkQCcy4dNX0lojt3ef6INnSLKJ6ivBT6+Tb86hvy/d+oW0sdPxnJkF7YbUOY3GXRGDtCXuYykxYWlBzLDzj1b1f7DqHp/v0FPc0p8TpKEpZIh1G2ZUgjglhSC33IJAJ5RRbankcJupaKMZAkNnPC+sBPvn3lAOfKMNB0cdeNv8qvkNrIY43W+uDp7IQvkFlDM+JR1h1WzTIiIica4ikhgphBUBLSKkhSihiduBF6jPaf/YBwUzz7K5M/VgNGMMLBqcwzO7m75/MrKozXm6awvsfHYytjXeC6gfcMurDA2NhiT60KYuM3wUGUDa+EkPK58kkzWGrjfRhqrOZfQGfRtiOO5OG40LMiSHbAyviTuuxSsMu1sE21e9a52MjK/nLg+I1u4Kdz2s6ByhV/pbdQMMznuwiKv6EBzxQXlwx/tnjjIQBX9H9Lqz2RbB6oX4ALiwCC8TVPA+Bwb21GLndqzolmip0piZE7LxH4G/nS+tkjxcAo7p9bGfHTzRUv5/fbtajx4dTAmTy4XmJH0B4yqeu1Kn8vp0JIQqF9ydtNO5NFXlL84wgdayFPn3Di4s7d3ceuxryiNLFy8u06DKZw/CoIkxghSy95ndeIxIqlehWsTVNU9FX6jGqDhvwTbG92j1GT61+msSjE7eCUtO234CmWrHt+0YgWJSHYYGIWVq/BB55UCO2YaXP7DsODeN02x95Vfxb5/aEJWZeZJqDIq6V17bc3DFUmiIqWNDRevoEk3FI+k0A4u7KQuSOaj+tuKuuXCogzSo2H4U5iPZB+X92nBfu0pNOYkodMwmR7rGxSCMYsjpb2oBObAmcrfJprsyC8V0Ha8dhuc4jSL+A+j3n08aw8BQDz59ClGvAKFkaqodqno7oQdTsvw+B4dUn+0nNn29yxQ2/h6ByVGrBzjUQPQ5qNAarD0MwqJIpduaZsCBeTvBu9hyuRM5kfW2rRgOE7y8wB+RJOYy9Mpf+X2Gz5ibdXiNlMZSxM4zLys+XEZ+xmiE12AIT4SsjmhlFvNniiIYh/tsWB1XSgB4wls6GJn28nhQEcCvxh5vYEo7tNOVqDFS1nVXYXcJOuFV6QJ/PAsG6rsrM9cRRMdisbz4PaSEIfbk72OCBJaWA9VY9UEWgdYX1sFFBzoUIhRO6CAS4xsniQ+FhsyEao/WRlnFNwiwPgeX5keFfKY3Tl5mqmWERbyXKYAqcSBRYsHZauYhDsfCQLHLKVUQChfAkxFyO2Z5pJEHiM48cvdDLGhewBz9qL6Cky9wMVu222vvUKVrLbUUCL0UU88c5Key+rCChX2GQkfSiCXRDkFWx4mCqax4Fmg/tEeoZQVVj+4Dk90ILbWqsKX3YKKzxpIbekQEtjKzU8U/3FQ42nvMQeV+yTqnjcCAFoq5+LYJrOgRpO6S+o8VPVQDiOplDdLUoNUI+sbJMeUv/mTA946Diu4LKa9Rl8dRhD5CDVMk7p5QPu5y4R0TbYkD5nyRks8mQLXZdxBcxQOpBksab0raTtjWN1lDtD1MUjdiUvBHGPlTS7vf61pyOm0tHqSjomqJDO5nXW+dIh8gsKbMHUdIOhj5ObCneQpT+SLCC9tQSYrFsCQoOBJHcbklk4O9l65BvVwZQFk201m5Hc3L1sBONP7AfilR9phQQ3PbY24gKrluXbvXBojr9LUeANoBFOvnmtRmPXyp0nT/L0pU28Opmr6YOaO8IiuKhuJFquJlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RL8HWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
35
+ "n": 4,
36
+ "_shape": [],
37
+ "dtype": "int64",
38
+ "_np_random": "RandomState(MT19937)"
39
+ },
40
+ "n_envs": 16,
41
+ "num_timesteps": 2000000,
42
+ "_total_timesteps": 2000000,
43
+ "_num_timesteps_at_start": 0,
44
+ "seed": 191,
45
+ "action_noise": null,
46
+ "start_time": 1677919569240831047,
47
+ "learning_rate": 0.0001,
48
+ "tensorboard_log": null,
49
+ "lr_schedule": {
50
+ ":type:": "<class 'function'>",
51
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
52
+ },
53
+ "_last_obs": {
54
+ ":type:": "<class 'numpy.ndarray'>",
55
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABOGgz5Pun89jLwpvSRzQ72frhC9Dq8NvQAAAAAAAAAAlhebPqJJHD97ab47y5kCvXK6DL1D++Y8AAAAAAAAAABNZ0M9DrINP3vfWTpgu3W7yJHSvLe5m7wAAAAAAAAAABPPAz4bzSI/RHCLvJ01Er0CRL29fjXbOwAAAAAAAAAAU/kkPhrbhT+brjW8Po4UvQ2Qlr32hu07AAAAAAAAAAAzMwk4ZdFxP/p6ZDohRgy9eDSnvRhM5rgAAAAAAAAAALNwTz6fIzw/auIwPcPGfrzxKAw8MEyAOwAAAAAAAAAAs7PKPZQZhj/rJXw9vbcEvbpE7jy7XXI8AAAAAAAAAADAIuI94y5QP0q/+jxPWqO8tLQvvVpWy7wAAAAAAAAAAJDmVL78PPI+OS6/Pbtb0r22Gei9sNpWPgAAAAAAAAAA7e9cPrtysD6Sm2y956g2vU6xkL3ykWG9AAAAAAAAAABgD2A+E1RFPwrOobyncK28JuUmvUALjDsAAAAAAAAAAGa/H72jh3Y/cDxzPbLlc70hFpy8eojWPAAAAAAAAAAAgJRQPmvlVT8FYlA9r6TivOAJLD0/Vg88AAAAAAAAAABjt5w+DnwWP4jZFr0Xj+U7fE1ovZ7We70AAAAAAAAAAHOL5T2968c+EFDuPE6ofrxUaje8gk1nPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
56
+ },
57
+ "_last_episode_starts": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_original_obs": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK2+gz6UD4I9f75KvctJqrwRmQm9PokUuwAAAAAAAAAAGg6bPrR4HD/AnzM8ngwhvbiAEr09NQ89AAAAAAAAAACzaEM9kLcNPwoQKjy9KgC9hcjKvCbk/rsAAAAAAAAAANP6Az7EASM/aCLYvB5CEbxh8729uco0PQAAAAAAAAAAcxUlPtr1hT/ocvu6JUIevBROl72Q8/C8AAAAAAAAAACamck35gNyPwD7JDzmkQe8lTGnvW6aGL0AAAAAAAAAAPr+Tj6LOjw/3U0nPYpC07zP8wg8EU2dOgAAAAAAAAAADW3JPXMxhj+GfYA9XfQTvZk16Dyek3A8AAAAAAAAAADNiOE9PkxQPwJAjTxLwOq8VJ8qvdPyEb0AAAAAAAAAAO32Vb5ibvM+8uOlPashmr36lf29pu6EPgAAAAAAAAAApo5dPt71sD7iCUC9x08tvagNi71yliy9AAAAAAAAAACTQmA+TXNFP4sxIbw/hZw7NcUnvQXnEb0AAAAAAAAAAAA8Ir1533Y/ln9LPQRvBL0n0Ka8tl6FPQAAAAAAAAAA+g1QPjMOVj9GY489a6EavTU/Kj0+fc08AAAAAAAAAAC965w+jnEWP9V2Xb1nywi99rVbvX5ulb0AAAAAAAAAADPv5D2VGcg+BdwePUxlHL0J+0K8a8fHPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
64
+ },
65
+ "_episode_num": 3689,
66
+ "use_sde": false,
67
+ "sde_sample_freq": -1,
68
+ "_current_progress_remaining": 0.0,
69
+ "ep_info_buffer": {
70
+ ":type:": "<class 'collections.deque'>",
71
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0LaadcZSWMCUhpRSlIwBbJRN6AOMAXSUR0CnRnldTo+wdX2UKGgGaAloD0MIz/dT46UnScCUhpRSlGgVTegDaBZHQKdITDb8FZB1fZQoaAZoCWgPQwj6CtKMRZFHwJSGlFKUaBVN6ANoFkdAp1gm4kNWl3V9lChoBmgJaA9DCNf6IqEtkU3AlIaUUpRoFU3oA2gWR0CnWa1bzK9xdX2UKGgGaAloD0MIjdXm/1XPL8CUhpRSlGgVTegDaBZHQKdZ2py6tkp1fZQoaAZoCWgPQwjtDikGSG5cwJSGlFKUaBVN6ANoFkdAp1p1y3kPtnV9lChoBmgJaA9DCI47pYP1RlzAlIaUUpRoFU3oA2gWR0CnW7UlZ5iWdX2UKGgGaAloD0MIPYBFfv3aVMCUhpRSlGgVTegDaBZHQKdlVQemvW91fZQoaAZoCWgPQwgxfhr35gc6wJSGlFKUaBVN6ANoFkdAp2fSNhmXgXV9lChoBmgJaA9DCPHW+bfL/lnAlIaUUpRoFU3oA2gWR0CnZ/W6shgWdX2UKGgGaAloD0MIhzJUxVRRVcCUhpRSlGgVTegDaBZHQKdqRnvlU6x1fZQoaAZoCWgPQwj1Se6wiUg1wJSGlFKUaBVN6ANoFkdAp2wVOVPepHV9lChoBmgJaA9DCH2W58HdrUfAlIaUUpRoFU3oA2gWR0Cnc5efywwCdX2UKGgGaAloD0MItrqcEhBzQMCUhpRSlGgVTegDaBZHQKd01vZRKpV1fZQoaAZoCWgPQwhYjpCBPBsHwJSGlFKUaBVN6ANoFkdAp3cHXTVlPXV9lChoBmgJaA9DCMyWrIpwAVXAlIaUUpRoFU3oA2gWR0CneA8n3L3cdX2UKGgGaAloD0MIP/1nzY+PG8CUhpRSlGgVTegDaBZHQKd93rTpgTh1fZQoaAZoCWgPQwi8Wu7MBMVLwJSGlFKUaBVN6ANoFkdAp39Z53Tuv3V9lChoBmgJaA9DCBgip6/n60LAlIaUUpRoFU3oA2gWR0Cnj7YU34sVdX2UKGgGaAloD0MIob/QI0bMU8CUhpRSlGgVTegDaBZHQKeRVFRYRul1fZQoaAZoCWgPQwiTOgFNhFVBwJSGlFKUaBVN6ANoFkdAp5GI55qubXV9lChoBmgJaA9DCE5BfjZyi1HAlIaUUpRoFU3oA2gWR0Cnki8k2P1ddX2UKGgGaAloD0MIu2QcI9lLNsCUhpRSlGgVTegDaBZHQKeTkZ0CA+Z1fZQoaAZoCWgPQwjog2Vs6FBAwJSGlFKUaBVN6ANoFkdAp55ejXWe6XV9lChoBmgJaA9DCOPHmLuW8ETAlIaUUpRoFU3oA2gWR0CnoMiLl3hXdX2UKGgGaAloD0MIjZyFPe1gKsCUhpRSlGgVTegDaBZHQKeg7ErGza91fZQoaAZoCWgPQwhwXwfOGYZdwJSGlFKUaBVN6ANoFkdAp6OMdtEXtXV9lChoBmgJaA9DCBO7trdbxkrAlIaUUpRoFU3oA2gWR0CnpYsfzSThdX2UKGgGaAloD0MI+DJRhNTVTMCUhpRSlGgVTegDaBZHQKexkcvM8ox1fZQoaAZoCWgPQwjPEI5Z9ulcwJSGlFKUaBVN6ANoFkdAp7MBf0Eov3V9lChoBmgJaA9DCJELzuDv5FXAlIaUUpRoFU3oA2gWR0CntaL876pHdX2UKGgGaAloD0MIjZsaaD5bQMCUhpRSlGgVTegDaBZHQKe2wCJXQt11fZQoaAZoCWgPQwhNSkG3l35DwJSGlFKUaBVN6ANoFkdAp70o5o4+83V9lChoBmgJaA9DCFU01v7OnjlAlIaUUpRoFU3oA2gWR0CnvviiZfD2dX2UKGgGaAloD0MIjspN1NL8WcCUhpRSlGgVTegDaBZHQKfP9aJyhi91fZQoaAZoCWgPQwgN5NnlW5FSwJSGlFKUaBVN6ANoFkdAp9GRXjlxO3V9lChoBmgJaA9DCJi+1xAcXVHAlIaUUpRoFU3oA2gWR0Cn0cHJT2nLdX2UKGgGaAloD0MIa9eEtMbMPMCUhpRSlGgVTegDaBZHQKfSWTibUgB1fZQoaAZoCWgPQwjlC1pIwKgTwJSGlFKUaBVN6ANoFkdAp9O6S/0ulHV9lChoBmgJaA9DCA5pVOBkPzDAlIaUUpRoFU3oA2gWR0Cn3uVFQVKxdX2UKGgGaAloD0MIDW0ANiDeUMCUhpRSlGgVTegDaBZHQKfhfqu8sc11fZQoaAZoCWgPQwiimSfXFJ1SwJSGlFKUaBVN6ANoFkdAp+Get6ol2XV9lChoBmgJaA9DCPUqMjogx1TAlIaUUpRoFU3oA2gWR0Cn4/CcXm/4dX2UKGgGaAloD0MIkYE8u3y7UcCUhpRSlGgVTegDaBZHQKfllDjzZpV1fZQoaAZoCWgPQwghBU8hV2NWwJSGlFKUaBVN6ANoFkdAp+z2De0ojXV9lChoBmgJaA9DCFcju9IywkXAlIaUUpRoFU3oA2gWR0Cn7kjgydnTdX2UKGgGaAloD0MIKo2Y2eemVsCUhpRSlGgVTegDaBZHQKfwvzvJA+p1fZQoaAZoCWgPQwhh4Ln3cE5RwJSGlFKUaBVN6ANoFkdAp/HY065oXnV9lChoBmgJaA9DCGw9QzhmgU7AlIaUUpRoFU3oA2gWR0Cn+BYY77sOdX2UKGgGaAloD0MIVg+Yh8x8akCUhpRSlGgVTdQCaBZHQKf5K5/b0vp1fZQoaAZoCWgPQwju6eqOxVYxwJSGlFKUaBVN6ANoFkdAp/ncYfnwHHV9lChoBmgJaA9DCPUSY5l+lVHAlIaUUpRoFU3oA2gWR0CoCqJiiItUdX2UKGgGaAloD0MICkrRyr3WSsCUhpRSlGgVTegDaBZHQKgMafywwCd1fZQoaAZoCWgPQwgbLnJPVwtTwJSGlFKUaBVN6ANoFkdAqA0XQla8pXV9lChoBmgJaA9DCAIPDCB8ukfAlIaUUpRoFU3oA2gWR0CoDrWNNrTIdX2UKGgGaAloD0MIIqmFkslbSsCUhpRSlGgVTegDaBZHQKgb7E1l5GB1fZQoaAZoCWgPQwgTgH9KlTpIwJSGlFKUaBVN6ANoFkdAqB7s3sHB13V9lChoBmgJaA9DCJ/Ik6RrljrAlIaUUpRoFU3oA2gWR0CoHxIPsiSrdX2UKGgGaAloD0MI9S1zuizSWsCUhpRSlGgVTegDaBZHQKghWU/wAlx1fZQoaAZoCWgPQwhmpN5TOYdOQJSGlFKUaBVN6ANoFkdAqCLHZuhsZnV9lChoBmgJaA9DCLOZQ1ILxGRAlIaUUpRoFU3lAmgWR0CoKc10Lc9GdX2UKGgGaAloD0MIQup29pVvKcCUhpRSlGgVTegDaBZHQKgqYMWoFV11fZQoaAZoCWgPQwhQHEC/7+BQwJSGlFKUaBVN6ANoFkdAqCutRm9QGnV9lChoBmgJaA9DCPHxCdl5d1BAlIaUUpRoFU3oA2gWR0CoLa1bRne0dX2UKGgGaAloD0MICK2HLxMrUMCUhpRSlGgVTegDaBZHQKguiBkI5YJ1fZQoaAZoCWgPQwjePqvMlLI4wJSGlFKUaBVN6ANoFkdAqDNqXt0FKXV9lChoBmgJaA9DCH0FacaiD1HAlIaUUpRoFU3oA2gWR0CoNDl4s3AEdX2UKGgGaAloD0MIeo7IdykdNsCUhpRSlGgVTegDaBZHQKhCuF2V3Ux1fZQoaAZoCWgPQwjDoEyjyQ1KwJSGlFKUaBVN6ANoFkdAqEQkxdpqRHV9lChoBmgJaA9DCMWrrG2KjUnAlIaUUpRoFU3oA2gWR0CoRLZYPoV3dX2UKGgGaAloD0MI2bCmsih0JcCUhpRSlGgVTegDaBZHQKhGBt+Csfd1fZQoaAZoCWgPQwjAX8yWrB5TwJSGlFKUaBVN6ANoFkdAqE/wgTyrgnV9lChoBmgJaA9DCLe3W5ID0lLAlIaUUpRoFU3oA2gWR0CoUbrL6k6+dX2UKGgGaAloD0MIJCpUNxcLOMCUhpRSlGgVTegDaBZHQKhRz4dp7C11fZQoaAZoCWgPQwi8XMR3YntUwJSGlFKUaBVN6ANoFkdAqFQ1TkyULXV9lChoBmgJaA9DCAQfgxWnzjHAlIaUUpRoFU3oA2gWR0CoVf0VrRBvdX2UKGgGaAloD0MIXYjVH2FoQsCUhpRSlGgVTegDaBZHQKheWGTLW7R1fZQoaAZoCWgPQwjWkLjH0vcUwJSGlFKUaBVN6ANoFkdAqF7wFkhA4XV9lChoBmgJaA9DCOzZc5masEBAlIaUUpRoFU3oA2gWR0CoYB30f5k9dX2UKGgGaAloD0MIa0qyDkfHVcCUhpRSlGgVTegDaBZHQKhiOHHFPzp1fZQoaAZoCWgPQwjtgywLJh4fwJSGlFKUaBVN6ANoFkdAqGMrqhUR4HV9lChoBmgJaA9DCFSsGoS50UZAlIaUUpRoFU3oA2gWR0CoaM7iZOSGdX2UKGgGaAloD0MIwAMDCB8CSMCUhpRSlGgVTegDaBZHQKhpv62v0RR1fZQoaAZoCWgPQwh4gCctXJJEQJSGlFKUaBVL2GgWR0Coafu2RaHLdX2UKGgGaAloD0MIP4178xszUMCUhpRSlGgVTegDaBZHQKh6bqzqrzZ1fZQoaAZoCWgPQwjoFU890s9RwJSGlFKUaBVN6ANoFkdAqHw7iIcin3V9lChoBmgJaA9DCLMmFviKn1PAlIaUUpRoFU3oA2gWR0CofP4PwuuidX2UKGgGaAloD0MI8Uv9vKlQS8CUhpRSlGgVTegDaBZHQKh+pv2oNut1fZQoaAZoCWgPQwhq9kArMHJFwJSGlFKUaBVN6ANoFkdAqItYg5imVXV9lChoBmgJaA9DCE1mvK30NEbAlIaUUpRoFU3oA2gWR0Cojen1e0HAdX2UKGgGaAloD0MI6YGPwYq5RsCUhpRSlGgVTegDaBZHQKiOEAVfu1F1fZQoaAZoCWgPQwgOwAZEiCNGwJSGlFKUaBVN6ANoFkdAqJDwudwvQHV9lChoBmgJaA9DCFGHFW75w1DAlIaUUpRoFU3oA2gWR0CokxjLjghsdX2UKGgGaAloD0MI22tB743RI8CUhpRSlGgVTegDaBZHQKicVXYlIEt1fZQoaAZoCWgPQwjMYIxIFEhOwJSGlFKUaBVN6ANoFkdAqJ0OxnnMdXV9lChoBmgJaA9DCL5p+uyAtVDAlIaUUpRoFU3oA2gWR0CooTYDDCP7dX2UKGgGaAloD0MI6/8c5svzO8CUhpRSlGgVTegDaBZHQKiib+wTufF1fZQoaAZoCWgPQwgTQ3IycRdWwJSGlFKUaBVN6ANoFkdAqKkb4tYjjnV9lChoBmgJaA9DCM0C7Q4prkvAlIaUUpRoFU3oA2gWR0CoqiEzXSSedX2UKGgGaAloD0MIY2GInL4yN8CUhpRSlGgVTegDaBZHQKiqfZ4fOlh1ZS4="
72
+ },
73
+ "ep_success_buffer": {
74
+ ":type:": "<class 'collections.deque'>",
75
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
76
+ },
77
+ "_n_updates": 30469,
78
+ "buffer_size": 1000000,
79
+ "batch_size": 32,
80
+ "learning_starts": 50000,
81
+ "tau": 1.0,
82
+ "gamma": 0.99,
83
+ "gradient_steps": 1,
84
+ "optimize_memory_usage": false,
85
+ "replay_buffer_class": {
86
+ ":type:": "<class 'abc.ABCMeta'>",
87
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
88
+ "__module__": "stable_baselines3.common.buffers",
89
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
90
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f367a51cb80>",
91
+ "add": "<function ReplayBuffer.add at 0x7f367a51cc10>",
92
+ "sample": "<function ReplayBuffer.sample at 0x7f367a51cca0>",
93
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f367a51cd30>",
94
+ "__abstractmethods__": "frozenset()",
95
+ "_abc_impl": "<_abc_data object at 0x7f367a5243f0>"
96
+ },
97
+ "replay_buffer_kwargs": {},
98
+ "train_freq": {
99
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
100
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
101
+ },
102
+ "actor": null,
103
+ "use_sde_at_warmup": false,
104
+ "exploration_initial_eps": 1.0,
105
+ "exploration_final_eps": 0.05,
106
+ "exploration_fraction": 0.1,
107
+ "target_update_interval": 625,
108
+ "_n_calls": 125000,
109
+ "max_grad_norm": 10,
110
+ "exploration_rate": 0.05,
111
+ "exploration_schedule": {
112
+ ":type:": "<class 'function'>",
113
+ ":serialized:": "gAWVZwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcEMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
114
+ },
115
+ "batch_norm_stats": [],
116
+ "batch_norm_stats_target": []
117
+ }
dqn-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82e0ba5b601c32a6dc9f485bdbeeee4c1ce09e72a2822e339f2d66031010f99e
3
+ size 44911
dqn-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbd2cd8bb5b961307b4817fa6dfa5343290ad55182708971963acfd768890a73
3
+ size 44033
dqn-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
dqn-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -156.3670454807172, "std_reward": 165.99697085115258, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-04T07:36:58.676904"}
 
1
+ {"mean_reward": -48.45643395913648, "std_reward": 29.838533565176878, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-04T09:36:52.757884"}