kontogiorgos
commited on
Commit
•
5f0757f
1
Parent(s):
54a16b3
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1396.79 +/- 48.52
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d84b034e456c7286c546b687d39b88b7a246b11214ade75c26228d6b6803cf3
|
3 |
+
size 129065
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f45e87e6f70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45e87eb040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45e87eb0d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45e87eb160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f45e87eb1f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f45e87eb280>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45e87eb310>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f45e87eb3a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45e87eb430>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45e87eb4c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45e87eb550>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f45e87dfcc0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1672006835227072163,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJDHpT+ypy0/yeoGvhG1F0BMsn4/iP6Bvjlyqz9qjKm+B/EEv+lS3j49GNw/oURqPASJ7D9+5bm834eNv5F5mj+Hbjo/zPJEP69uJT+Pvk0+V5+Tv32vpT0RHOi+FzdZPtMHcb/+ch4/4tO1PoCMDz86zO0/PCkkP0hkmL13SsI/OUL9P7UQoj+nIaU/GeWTv7aV9r1BpSk/o3X7P/1rrr1squ4/X8twP7CKGb+RAiw/GYVxva4Ilj6f+SY/4gbuPAZacL90CIu/49SVP0PUT7/TB3G//nIeP+LTtT6AjA8/wRh2ve1rmj6gWaw+qmPIv9XxAkDCIxbAIwKbPtGMhb8LWQO+DzjkPtrj7T+v1Kg/etedv9OpxT0TOWm+gI0GwBfl/T/rcAlAvBj0Pi8IE0BHZb6+kSshQPYwx77h5Na/FvOHP/HNzr/i07U+UEXkv+3t/j4a4Yw/0Y3+v5MWoT/JXZW+fAHrPra7mj+5P5A+lxGgPzvegr5LZfw/UACovOe2Mz9iPLk/YpLovwYd1T7lBsQ/OTlIvt5NJz+OJk+5MGuRv/tEsrihGXy/wU68vdMHcb/+ch4/4tO1PoCMDz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADc6Bm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdz72vQAAAAD8peq/AAAAAGRPjz0AAAAArPHtPwAAAACdEhC+AAAAAF29AEAAAAAAsR4PPgAAAADEJfC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHrFtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCv/Pj0AAAAAVJPuvwAAAACoE6K9AAAAAC6C7j8AAAAAX1tHPQAAAAArBfY/AAAAAKpjS7wAAAAAonnlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADr4zLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAGA249AAAAAMs0/L8AAAAAoonhPAAAAABziOk/AAAAAMs9uL0AAAAACI7pPwAAAACIuwk+AAAAAOfd3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVZr81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaO2tvAAAAAAije6/AAAAAA2gYD0AAAAAtODqPwAAAACfAwC9AAAAAMHT7T8AAAAA2uyFvAAAAADoo+G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZTT1kDp1SMAWyUTegDjAF0lEdAqsQQkona4HV9lChoBkdAmDkQssg+yWgHTegDaAhHQKrG0XGff411fZQoaAZHQJk3hbY9Pk9oB03oA2gIR0CqzoA0CRwIdX2UKGgGR0CXXViX6ZYxaAdN6ANoCEdAqs7AGQjlgnV9lChoBkdAmoWxTn7pFGgHTegDaAhHQKrR3Jsfq5d1fZQoaAZHQJo7m45Lh75oB03oA2gIR0Cq1Jc3uNPydX2UKGgGR0CZVqj5sTFmaAdN6ANoCEdAqtxL1dxAB3V9lChoBkdAmX7j9KmKqGgHTegDaAhHQKrcgYVIqb11fZQoaAZHQJcZfi2lVLloB03oA2gIR0Cq35metjkNdX2UKGgGR0CXDPkz41xbaAdN6ANoCEdAquJMNvwVkHV9lChoBkdAmBgYuK4x12gHTegDaAhHQKrqh7wazeJ1fZQoaAZHQJsheu0TlDFoB03oA2gIR0Cq6uBIFvAHdX2UKGgGR0CaOcnIyTIOaAdN6ANoCEdAqu/Xx6OYIHV9lChoBkdAm3/ozFdcB2gHTegDaAhHQKrynT+ee4F1fZQoaAZHQJfB3huO0b9oB03oA2gIR0Cq+kdznzQNdX2UKGgGR0CZtSh0Qsf8aAdN6ANoCEdAqvp+G7Bfr3V9lChoBkdAmysQm/nGKmgHTegDaAhHQKr9qtHQQcx1fZQoaAZHQJeINnTRYzVoB03oA2gIR0CrAHMC9ytFdX2UKGgGR0CZIsGFSKm9aAdN6ANoCEdAqwgyxRl6JXV9lChoBkdAlPk1J6IFeWgHTegDaAhHQKsIazHjp9t1fZQoaAZHQJkHGyprDZVoB03oA2gIR0CrC42BreqJdX2UKGgGR0CaL49nK4hEaAdN6ANoCEdAqw43KdQO4HV9lChoBkdAmvq3XumaY2gHTegDaAhHQKsV9DuSfUZ1fZQoaAZHQJrdaEEkjX5oB03oA2gIR0CrFirmZE2HdX2UKGgGR0CZDnqhUR4AaAdN6ANoCEdAqxlGk30f5nV9lChoBkdAmVBrUkOZs2gHTegDaAhHQKsb/7EYO2B1fZQoaAZHQJdbvF85S3toB03oA2gIR0CrJIzOX3QEdX2UKGgGR0CWxMw9q1w6aAdN6ANoCEdAqyTj0cwQDnV9lChoBkdAlo9uMhouf2gHTegDaAhHQKspqagElmh1fZQoaAZHQJXJcCGN70FoB03oA2gIR0CrLHFFUhmodX2UKGgGR0CUGVRtxdY5aAdN6ANoCEdAqzQ7Y9Pk73V9lChoBkdAmBZbonrpq2gHTegDaAhHQKs0c+kgwGp1fZQoaAZHQJROzyBkI5ZoB03oA2gIR0CrN5CwSrYHdX2UKGgGR0CXiv2KEWZaaAdN6ANoCEdAqzpVuNxVAHV9lChoBkdAll+5FgDzRWgHTegDaAhHQKtCQRjjJdV1fZQoaAZHQJgF0jdHlOpoB03oA2gIR0CrQodIGyHEdX2UKGgGR0CXL5faHsTnaAdN6ANoCEdAq0Wt0o0ALnV9lChoBkdAmJiG/JvHcWgHTegDaAhHQKtIXs+FDfF1fZQoaAZHQJpvXZ39rGloB03oA2gIR0CrUBRjjJdTdX2UKGgGR0Ca89ksz2vjaAdN6ANoCEdAq1BQ13t8eHV9lChoBkdAkoUjBMzuW2gHTegDaAhHQKtTg31jAi51fZQoaAZHQJixz8IiTt9oB03oA2gIR0CrVjU/GEPEdX2UKGgGR0CXuN/M4cWCaAdN6ANoCEdAq13OWY4Qz3V9lChoBkdAl1k+CK77K2gHTegDaAhHQKteBeKKpDN1fZQoaAZHQJq33iIcinpoB03oA2gIR0CrYT4nv2GqdX2UKGgGR0CbdoTzundgaAdN6ANoCEdAq2PxScbzb3V9lChoBkdAmmEWcFyJbmgHTegDaAhHQKtrthvze411fZQoaAZHQJkAq9RJmNBoB03oA2gIR0Cra+y1Vo6CdX2UKGgGR0CXnN9tMwlCaAdN6ANoCEdAq28DufEn9nV9lChoBkdAmxs72HtWuGgHTegDaAhHQKtxtA31jAl1fZQoaAZHQJUmJObiIcloB03oA2gIR0CreXHVwxWUdX2UKGgGR0CUuxIkZ75VaAdN6ANoCEdAq3mstuk1uXV9lChoBkdAkXUH49HMEGgHTegDaAhHQKt8zxgiNbV1fZQoaAZHQJQT1L9MsYloB03oA2gIR0Crf47K7qY7dX2UKGgGR0CDvJalDWsjaAdN6ANoCEdAq4emLaVUuXV9lChoBkdAk/6jEit7r2gHTegDaAhHQKuH3y8SPEN1fZQoaAZHQJGg1oCdSVJoB03oA2gIR0CriwId2gWadX2UKGgGR0CQ/STXJ5miaAdN6ANoCEdAq42qHCXQdHV9lChoBkdAm0k4DxLCemgHTegDaAhHQKuVSxSpBHF1fZQoaAZHQJd4HUgB91FoB03oA2gIR0CrlX5M+NcXdX2UKGgGR0CWKNcaOxSpaAdN6ANoCEdAq5ilmFrVOXV9lChoBkdAkwZt5prULGgHTegDaAhHQKubYwblzU91fZQoaAZHQJwXeZmZmZpoB03oA2gIR0CroyX4bjtHdX2UKGgGR0Cb1q0FKTStaAdN6ANoCEdAq6NbMPjGUHV9lChoBkdAlHF22oegc2gHTegDaAhHQKumhaxHG0h1fZQoaAZHQJXOygrYoRZoB03oA2gIR0CrqU2sA/9pdX2UKGgGR0CWVOOAiFCcaAdN6ANoCEdAq7EQWcjJMnV9lChoBkdAlepFJcxCY2gHTegDaAhHQKuxR5JK8L91fZQoaAZHQJbdkID5j6NoB03oA2gIR0CrtH4DTz/ZdX2UKGgGR0CX56oA4n4PaAdN6ANoCEdAq7c15+pfhXV9lChoBkdAl7fdi+cpb2gHTegDaAhHQKu+6RK6Fuh1fZQoaAZHQJTdn889wFVoB03oA2gIR0CrvyTCLuQZdX2UKGgGR0CY4IV9F4LUaAdN6ANoCEdAq8I/6Q/5cnV9lChoBkdAmGnRCD28I2gHTegDaAhHQKvFwK1G9Yh1fZQoaAZHQJQHyOyVv/BoB03oA2gIR0CrzxSoOx0NdX2UKGgGR0CXEMtYjjaPaAdN6ANoCEdAq89KAhB7eHV9lChoBkdAmU2AA6uGK2gHTegDaAhHQKvSb4L1EmZ1fZQoaAZHQJZpHMxGlRBoB03oA2gIR0Cr1SEuHvc8dX2UKGgGR0CXB6PoFFDwaAdN6ANoCEdAq9z/LaEi+3V9lChoBkdAlIR+ndfsu2gHTegDaAhHQKvdM4XGff51fZQoaAZHQJJaAaIeo1loB03oA2gIR0Cr4FLXUYsNdX2UKGgGR0CWLrEeQuEmaAdN6ANoCEdAq+MOR7qptXV9lChoBkdAlEyRzeXRgWgHTegDaAhHQKvqxIPsiSt1fZQoaAZHQJIcmukk8ihoB03oA2gIR0Cr6vpAdGRWdX2UKGgGR0CQ5ChGH58CaAdN6ANoCEdAq+47wx33YnV9lChoBkdAi7UaG5+Yt2gHTegDaAhHQKvxBscABDJ1fZQoaAZHQIyPDg62fChoB03oA2gIR0Cr+MlcY64ldX2UKGgGR0CR/NFBY3efaAdN6ANoCEdAq/j92V3Ux3V9lChoBkdAipcxk3CKrWgHTegDaAhHQKv8JkFOful1fZQoaAZHQJK+nZYgaFVoB03oA2gIR0CsAEJlz2eydX2UKGgGR0CSueK508vFaAdN6ANoCEdArAlIqZtvXXV9lChoBkdAkMwl/MGHHmgHTegDaAhHQKwJgSElE7Z1fZQoaAZHQJCK7ywwCbNoB03oA2gIR0CsDKz/6wdKdX2UKGgGR0CUGWbcGkeqaAdN6ANoCEdArA+CwW3z+XV9lChoBkdAlLOYLb5/LGgHTegDaAhHQKwXetga3ql1fZQoaAZHQJQuVtJnQIFoB03oA2gIR0CsF7Dl5nlGdX2UKGgGR0CTSH33pOeraAdN6ANoCEdArBrVZkkKNXV9lChoBkdAlNfP3i704GgHTegDaAhHQKwdmT/yXld1fZQoaAZHQJWdWEdvKlpoB03oA2gIR0CsJXRDst03dX2UKGgGR0CU3wocrAgxaAdN6ANoCEdArCWuZof0VnVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:839cd031f92891ea6427f86ec0fe1b383e51cb4fe606c8914665195df4962015
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3345e15f7d982219f58c23e778af938a2c3bea080eaa25100da0c9f41254bb0
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45e87e6f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45e87eb040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45e87eb0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45e87eb160>", "_build": "<function ActorCriticPolicy._build at 0x7f45e87eb1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f45e87eb280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45e87eb310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f45e87eb3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45e87eb430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45e87eb4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45e87eb550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f45e87dfcc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672006835227072163, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJDHpT+ypy0/yeoGvhG1F0BMsn4/iP6Bvjlyqz9qjKm+B/EEv+lS3j49GNw/oURqPASJ7D9+5bm834eNv5F5mj+Hbjo/zPJEP69uJT+Pvk0+V5+Tv32vpT0RHOi+FzdZPtMHcb/+ch4/4tO1PoCMDz86zO0/PCkkP0hkmL13SsI/OUL9P7UQoj+nIaU/GeWTv7aV9r1BpSk/o3X7P/1rrr1squ4/X8twP7CKGb+RAiw/GYVxva4Ilj6f+SY/4gbuPAZacL90CIu/49SVP0PUT7/TB3G//nIeP+LTtT6AjA8/wRh2ve1rmj6gWaw+qmPIv9XxAkDCIxbAIwKbPtGMhb8LWQO+DzjkPtrj7T+v1Kg/etedv9OpxT0TOWm+gI0GwBfl/T/rcAlAvBj0Pi8IE0BHZb6+kSshQPYwx77h5Na/FvOHP/HNzr/i07U+UEXkv+3t/j4a4Yw/0Y3+v5MWoT/JXZW+fAHrPra7mj+5P5A+lxGgPzvegr5LZfw/UACovOe2Mz9iPLk/YpLovwYd1T7lBsQ/OTlIvt5NJz+OJk+5MGuRv/tEsrihGXy/wU68vdMHcb/+ch4/4tO1PoCMDz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADc6Bm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdz72vQAAAAD8peq/AAAAAGRPjz0AAAAArPHtPwAAAACdEhC+AAAAAF29AEAAAAAAsR4PPgAAAADEJfC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHrFtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCv/Pj0AAAAAVJPuvwAAAACoE6K9AAAAAC6C7j8AAAAAX1tHPQAAAAArBfY/AAAAAKpjS7wAAAAAonnlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADr4zLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAGA249AAAAAMs0/L8AAAAAoonhPAAAAABziOk/AAAAAMs9uL0AAAAACI7pPwAAAACIuwk+AAAAAOfd3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVZr81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaO2tvAAAAAAije6/AAAAAA2gYD0AAAAAtODqPwAAAACfAwC9AAAAAMHT7T8AAAAA2uyFvAAAAADoo+G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZTT1kDp1SMAWyUTegDjAF0lEdAqsQQkona4HV9lChoBkdAmDkQssg+yWgHTegDaAhHQKrG0XGff411fZQoaAZHQJk3hbY9Pk9oB03oA2gIR0CqzoA0CRwIdX2UKGgGR0CXXViX6ZYxaAdN6ANoCEdAqs7AGQjlgnV9lChoBkdAmoWxTn7pFGgHTegDaAhHQKrR3Jsfq5d1fZQoaAZHQJo7m45Lh75oB03oA2gIR0Cq1Jc3uNPydX2UKGgGR0CZVqj5sTFmaAdN6ANoCEdAqtxL1dxAB3V9lChoBkdAmX7j9KmKqGgHTegDaAhHQKrcgYVIqb11fZQoaAZHQJcZfi2lVLloB03oA2gIR0Cq35metjkNdX2UKGgGR0CXDPkz41xbaAdN6ANoCEdAquJMNvwVkHV9lChoBkdAmBgYuK4x12gHTegDaAhHQKrqh7wazeJ1fZQoaAZHQJsheu0TlDFoB03oA2gIR0Cq6uBIFvAHdX2UKGgGR0CaOcnIyTIOaAdN6ANoCEdAqu/Xx6OYIHV9lChoBkdAm3/ozFdcB2gHTegDaAhHQKrynT+ee4F1fZQoaAZHQJfB3huO0b9oB03oA2gIR0Cq+kdznzQNdX2UKGgGR0CZtSh0Qsf8aAdN6ANoCEdAqvp+G7Bfr3V9lChoBkdAmysQm/nGKmgHTegDaAhHQKr9qtHQQcx1fZQoaAZHQJeINnTRYzVoB03oA2gIR0CrAHMC9ytFdX2UKGgGR0CZIsGFSKm9aAdN6ANoCEdAqwgyxRl6JXV9lChoBkdAlPk1J6IFeWgHTegDaAhHQKsIazHjp9t1fZQoaAZHQJkHGyprDZVoB03oA2gIR0CrC42BreqJdX2UKGgGR0CaL49nK4hEaAdN6ANoCEdAqw43KdQO4HV9lChoBkdAmvq3XumaY2gHTegDaAhHQKsV9DuSfUZ1fZQoaAZHQJrdaEEkjX5oB03oA2gIR0CrFirmZE2HdX2UKGgGR0CZDnqhUR4AaAdN6ANoCEdAqxlGk30f5nV9lChoBkdAmVBrUkOZs2gHTegDaAhHQKsb/7EYO2B1fZQoaAZHQJdbvF85S3toB03oA2gIR0CrJIzOX3QEdX2UKGgGR0CWxMw9q1w6aAdN6ANoCEdAqyTj0cwQDnV9lChoBkdAlo9uMhouf2gHTegDaAhHQKspqagElmh1fZQoaAZHQJXJcCGN70FoB03oA2gIR0CrLHFFUhmodX2UKGgGR0CUGVRtxdY5aAdN6ANoCEdAqzQ7Y9Pk73V9lChoBkdAmBZbonrpq2gHTegDaAhHQKs0c+kgwGp1fZQoaAZHQJROzyBkI5ZoB03oA2gIR0CrN5CwSrYHdX2UKGgGR0CXiv2KEWZaaAdN6ANoCEdAqzpVuNxVAHV9lChoBkdAll+5FgDzRWgHTegDaAhHQKtCQRjjJdV1fZQoaAZHQJgF0jdHlOpoB03oA2gIR0CrQodIGyHEdX2UKGgGR0CXL5faHsTnaAdN6ANoCEdAq0Wt0o0ALnV9lChoBkdAmJiG/JvHcWgHTegDaAhHQKtIXs+FDfF1fZQoaAZHQJpvXZ39rGloB03oA2gIR0CrUBRjjJdTdX2UKGgGR0Ca89ksz2vjaAdN6ANoCEdAq1BQ13t8eHV9lChoBkdAkoUjBMzuW2gHTegDaAhHQKtTg31jAi51fZQoaAZHQJixz8IiTt9oB03oA2gIR0CrVjU/GEPEdX2UKGgGR0CXuN/M4cWCaAdN6ANoCEdAq13OWY4Qz3V9lChoBkdAl1k+CK77K2gHTegDaAhHQKteBeKKpDN1fZQoaAZHQJq33iIcinpoB03oA2gIR0CrYT4nv2GqdX2UKGgGR0CbdoTzundgaAdN6ANoCEdAq2PxScbzb3V9lChoBkdAmmEWcFyJbmgHTegDaAhHQKtrthvze411fZQoaAZHQJkAq9RJmNBoB03oA2gIR0Cra+y1Vo6CdX2UKGgGR0CXnN9tMwlCaAdN6ANoCEdAq28DufEn9nV9lChoBkdAmxs72HtWuGgHTegDaAhHQKtxtA31jAl1fZQoaAZHQJUmJObiIcloB03oA2gIR0CreXHVwxWUdX2UKGgGR0CUuxIkZ75VaAdN6ANoCEdAq3mstuk1uXV9lChoBkdAkXUH49HMEGgHTegDaAhHQKt8zxgiNbV1fZQoaAZHQJQT1L9MsYloB03oA2gIR0Crf47K7qY7dX2UKGgGR0CDvJalDWsjaAdN6ANoCEdAq4emLaVUuXV9lChoBkdAk/6jEit7r2gHTegDaAhHQKuH3y8SPEN1fZQoaAZHQJGg1oCdSVJoB03oA2gIR0CriwId2gWadX2UKGgGR0CQ/STXJ5miaAdN6ANoCEdAq42qHCXQdHV9lChoBkdAm0k4DxLCemgHTegDaAhHQKuVSxSpBHF1fZQoaAZHQJd4HUgB91FoB03oA2gIR0CrlX5M+NcXdX2UKGgGR0CWKNcaOxSpaAdN6ANoCEdAq5ilmFrVOXV9lChoBkdAkwZt5prULGgHTegDaAhHQKubYwblzU91fZQoaAZHQJwXeZmZmZpoB03oA2gIR0CroyX4bjtHdX2UKGgGR0Cb1q0FKTStaAdN6ANoCEdAq6NbMPjGUHV9lChoBkdAlHF22oegc2gHTegDaAhHQKumhaxHG0h1fZQoaAZHQJXOygrYoRZoB03oA2gIR0CrqU2sA/9pdX2UKGgGR0CWVOOAiFCcaAdN6ANoCEdAq7EQWcjJMnV9lChoBkdAlepFJcxCY2gHTegDaAhHQKuxR5JK8L91fZQoaAZHQJbdkID5j6NoB03oA2gIR0CrtH4DTz/ZdX2UKGgGR0CX56oA4n4PaAdN6ANoCEdAq7c15+pfhXV9lChoBkdAl7fdi+cpb2gHTegDaAhHQKu+6RK6Fuh1fZQoaAZHQJTdn889wFVoB03oA2gIR0CrvyTCLuQZdX2UKGgGR0CY4IV9F4LUaAdN6ANoCEdAq8I/6Q/5cnV9lChoBkdAmGnRCD28I2gHTegDaAhHQKvFwK1G9Yh1fZQoaAZHQJQHyOyVv/BoB03oA2gIR0CrzxSoOx0NdX2UKGgGR0CXEMtYjjaPaAdN6ANoCEdAq89KAhB7eHV9lChoBkdAmU2AA6uGK2gHTegDaAhHQKvSb4L1EmZ1fZQoaAZHQJZpHMxGlRBoB03oA2gIR0Cr1SEuHvc8dX2UKGgGR0CXB6PoFFDwaAdN6ANoCEdAq9z/LaEi+3V9lChoBkdAlIR+ndfsu2gHTegDaAhHQKvdM4XGff51fZQoaAZHQJJaAaIeo1loB03oA2gIR0Cr4FLXUYsNdX2UKGgGR0CWLrEeQuEmaAdN6ANoCEdAq+MOR7qptXV9lChoBkdAlEyRzeXRgWgHTegDaAhHQKvqxIPsiSt1fZQoaAZHQJIcmukk8ihoB03oA2gIR0Cr6vpAdGRWdX2UKGgGR0CQ5ChGH58CaAdN6ANoCEdAq+47wx33YnV9lChoBkdAi7UaG5+Yt2gHTegDaAhHQKvxBscABDJ1fZQoaAZHQIyPDg62fChoB03oA2gIR0Cr+MlcY64ldX2UKGgGR0CR/NFBY3efaAdN6ANoCEdAq/j92V3Ux3V9lChoBkdAipcxk3CKrWgHTegDaAhHQKv8JkFOful1fZQoaAZHQJK+nZYgaFVoB03oA2gIR0CsAEJlz2eydX2UKGgGR0CSueK508vFaAdN6ANoCEdArAlIqZtvXXV9lChoBkdAkMwl/MGHHmgHTegDaAhHQKwJgSElE7Z1fZQoaAZHQJCK7ywwCbNoB03oA2gIR0CsDKz/6wdKdX2UKGgGR0CUGWbcGkeqaAdN6ANoCEdArA+CwW3z+XV9lChoBkdAlLOYLb5/LGgHTegDaAhHQKwXetga3ql1fZQoaAZHQJQuVtJnQIFoB03oA2gIR0CsF7Dl5nlGdX2UKGgGR0CTSH33pOeraAdN6ANoCEdArBrVZkkKNXV9lChoBkdAlNfP3i704GgHTegDaAhHQKwdmT/yXld1fZQoaAZHQJWdWEdvKlpoB03oA2gIR0CsJXRDst03dX2UKGgGR0CU3wocrAgxaAdN6ANoCEdArCWuZof0VnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81d1e651ae8b0f9213dd7f114c25f919c8958ffe0a5c79fef6af66c1ac84f05c
|
3 |
+
size 1133838
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1396.788637390011, "std_reward": 48.52275114055147, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-25T23:32:18.938381"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b959cd1da1a28a226a618ab3c6eddbb7c399dfe22536d4749954bebd3983c4c
|
3 |
+
size 2521
|