kongacute commited on
Commit
ddf7dfd
1 Parent(s): 567d8be

Upload PPO LunarLander-v2 trained agent hyperparameter tunning by optuna

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -856.19 +/- 384.34
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd2497d8790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd2497d8820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd2497d88b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd2497d8940>", "_build": "<function ActorCriticPolicy._build at 0x7fd2497d89d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd2497d8a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd2497d8af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd2497d8b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd2497d8c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd2497d8ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd2497d8d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd2497d8dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd2497d71b0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677473265517278406, "learning_rate": 0.0358441622999966, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+iWiqBqXkJhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALNuOL0Ep9tAjUKmv8zQO0AUQx8/2ws6PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2ln0TkUoe8CUhpRSlIwBbJRLVIwBdJRHQL621dRBNVR1fZQoaAZoCWgPQwhd/dgkv+GCwJSGlFKUaBVLjmgWR0C+t/FBIFvAdX2UKGgGaAloD0MIG7luSrmtiMCUhpRSlGgVS6doFkdAvrk2eZof0XV9lChoBmgJaA9DCBXmPc50C3fAlIaUUpRoFUtOaBZHQL650lAu7H11fZQoaAZoCWgPQwhIwylz81eCwJSGlFKUaBVLSmgWR0C+umOVC5VfdX2UKGgGaAloD0MIKPBOPp02gsCUhpRSlGgVS3VoFkdAvrtFaGHpKXV9lChoBmgJaA9DCAfvq3JhUn3AlIaUUpRoFUtRaBZHQL674YqG1x91fZQoaAZoCWgPQwgk8fJ0zsmJwJSGlFKUaBVLhmgWR0C+vOp8a4tpdX2UKGgGaAloD0MIHhZqTRtTo8CUhpRSlGgVTS8BaBZHQL6/Tmdy1eB1fZQoaAZoCWgPQwiUoL/Q4/mAwJSGlFKUaBVLVmgWR0C+v/RZQpF1dX2UKGgGaAloD0MI+OKL9nicjsCUhpRSlGgVS5hoFkdAvsEbg5zYEnV9lChoBmgJaA9DCAiwyK+/CoDAlIaUUpRoFUtPaBZHQL7Bth/y5I91fZQoaAZoCWgPQwjfGAKAQwiLwJSGlFKUaBVLfmgWR0C+wqyJTER8dX2UKGgGaAloD0MI1QYnoj+cncCUhpRSlGgVS+ZoFkdAvsRxrBTGYXV9lChoBmgJaA9DCLWpukc24X7AlIaUUpRoFUtYaBZHQL7FIQ1aW5Z1fZQoaAZoCWgPQwjMDYY6zDGAwJSGlFKUaBVLYGgWR0C+xdoS6DoRdX2UKGgGaAloD0MIbXGNz0SUh8CUhpRSlGgVS2hoFkdAvsao85jpcHV9lChoBmgJaA9DCMd/gSAAwYLAlIaUUpRoFUtcaBZHQL7HZJMQEp11fZQoaAZoCWgPQwiuLqcE5GmAwJSGlFKUaBVLeWgWR0C+yF4mPYFrdX2UKGgGaAloD0MIQlvOpcgqlMCUhpRSlGgVS8poFkdAvsrFzjm0V3V9lChoBmgJaA9DCLCryVN2JIDAlIaUUpRoFUtnaBZHQL7LqSWqtHR1fZQoaAZoCWgPQwgzbmqguR2SwJSGlFKUaBVLl2gWR0C+zOpY5ksjdX2UKGgGaAloD0MI1jpxOV76ecCUhpRSlGgVS2FoFkdAvs2x3gUDdXV9lChoBmgJaA9DCN2zrtFCZJHAlIaUUpRoFUuiaBZHQL7O/qMWGh51fZQoaAZoCWgPQwiRe7q6V/a3wJSGlFKUaBVN6gFoFkdAvtP4q+ajOHV9lChoBmgJaA9DCJ8gsd2djYbAlIaUUpRoFUuLaBZHQL7VF9dNWU91fZQoaAZoCWgPQwgPuK6YkS+BwJSGlFKUaBVLZGgWR0C+1eWLP2PDdX2UKGgGaAloD0MItAHYgIgRgsCUhpRSlGgVS1ZoFkdAvtaVzr/sFHV9lChoBmgJaA9DCLTlXIqbFKnAlIaUUpRoFU04AWgWR0C+2SvPC2tudX2UKGgGaAloD0MIBU1LrIyYgcCUhpRSlGgVS0poFkdAvtofYYixFHV9lChoBmgJaA9DCCZzLO8qZYPAlIaUUpRoFUtdaBZHQL7bUcRUWEd1fZQoaAZoCWgPQwhQOLu1zBSBwJSGlFKUaBVLUWgWR0C+2/MCtA9ndX2UKGgGaAloD0MIGk0uxoATgsCUhpRSlGgVS1xoFkdAvty1xEORT3V9lChoBmgJaA9DCMhAnl2+K4LAlIaUUpRoFUtraBZHQL7djEjxCpp1fZQoaAZoCWgPQwiT4uMTUk+BwJSGlFKUaBVLSWgWR0C+3iR6rvLHdX2UKGgGaAloD0MIb0VigvoJisCUhpRSlGgVS2xoFkdAvt77spoboHV9lChoBmgJaA9DCLmKxW+CnKDAlIaUUpRoFU0KAWgWR0C+4Ssc+7lJdX2UKGgGaAloD0MIc/c5PromhMCUhpRSlGgVS2RoFkdAvuJaQ5myxHV9lChoBmgJaA9DCFHYRdEbSarAlIaUUpRoFU1PAWgWR0C+5YzXOGCadX2UKGgGaAloD0MIChAFM4bqgcCUhpRSlGgVS1FoFkdAvuYvQkX1rnV9lChoBmgJaA9DCAPRkzLp2YPAlIaUUpRoFUtTaBZHQL7m0qYZ2p11fZQoaAZoCWgPQwimuRXC6tmiwJSGlFKUaBVNDwFoFkdAvukPBGhEjXV9lChoBmgJaA9DCH7gKk8gRIPAlIaUUpRoFUtYaBZHQL7p2vkBCD51fZQoaAZoCWgPQwjQX+gR43OEwJSGlFKUaBVLZGgWR0C+6zJlrdnCdX2UKGgGaAloD0MICrsoeiCwlsCUhpRSlGgVS+JoFkdAvu0tmEoOQXV9lChoBmgJaA9DCIxl+iWivYDAlIaUUpRoFUtIaBZHQL7txaxoqTd1fZQoaAZoCWgPQwiRYoBEs6OJwJSGlFKUaBVLmmgWR0C+7wJf6XSjdX2UKGgGaAloD0MIP1WFBoIzgMCUhpRSlGgVS1VoFkdAvu+ucawUxnV9lChoBmgJaA9DCBrCMcs+Y4PAlIaUUpRoFUtmaBZHQL7web9qDbt1fZQoaAZoCWgPQwi4sG68W+SCwJSGlFKUaBVLXGgWR0C+8TJowmE5dX2UKGgGaAloD0MITioaa5+bisCUhpRSlGgVS39oFkdAvvKTFglWwXV9lChoBmgJaA9DCFT+tbxy54bAlIaUUpRoFUtjaBZHQL7z2slLOA11fZQoaAZoCWgPQwhkB5W4TuZ8wJSGlFKUaBVLU2gWR0C+9H336AOKdX2UKGgGaAloD0MIJA7ZQHqxgsCUhpRSlGgVS1toFkdAvvU00pEx7HV9lChoBmgJaA9DCInqrYFNFoTAlIaUUpRoFUt4aBZHQL72KN0NjLB1fZQoaAZoCWgPQwgmxccnZNl/wJSGlFKUaBVLXWgWR0C+9ulSbYsedX2UKGgGaAloD0MI+zvbo5f/gcCUhpRSlGgVS4BoFkdAvvfyki2UjnV9lChoBmgJaA9DCHOc24TbtoTAlIaUUpRoFUteaBZHQL74qjvuw5h1fZQoaAZoCWgPQwiXcOgtXrJ8wJSGlFKUaBVLVWgWR0C++VcK5TZQdX2UKGgGaAloD0MIlugss2iMgcCUhpRSlGgVS1doFkdAvvosiFCb+nV9lChoBmgJaA9DCP578NoF3IPAlIaUUpRoFUtcaBZHQL77YWPcSGt1fZQoaAZoCWgPQwiB6EmZlA+NwJSGlFKUaBVLoWgWR0C+/OE3n6l+dX2UKGgGaAloD0MIzLVoAcrskMCUhpRSlGgVS69oFkdAvv5JKRMewXV9lChoBmgJaA9DCO1imukuc5bAlIaUUpRoFUuwaBZHQL7/ug3Lmp51fZQoaAZoCWgPQwivsyH/HISRwJSGlFKUaBVLmWgWR0C/AO2Zy+6AdX2UKGgGaAloD0MIpDmy8mv3gMCUhpRSlGgVS0loFkdAvwGFHLA573V9lChoBmgJaA9DCPFG5pF/FI7AlIaUUpRoFUuMaBZHQL8DCe+mFal1fZQoaAZoCWgPQwj4qL9ewQeBwJSGlFKUaBVLTGgWR0C/BAqG1x82dX2UKGgGaAloD0MIFoVdFD3Nf8CUhpRSlGgVS0poFkdAvwSnXxvvSnV9lChoBmgJaA9DCIbj+QxItIbAlIaUUpRoFUtuaBZHQL8Fhs8xKxt1fZQoaAZoCWgPQwj5MeauJfh6wJSGlFKUaBVLS2gWR0C/BiA/C66KdX2UKGgGaAloD0MIiIVa03wpfsCUhpRSlGgVS1xoFkdAvwbXrGBFu3V9lChoBmgJaA9DCHvct1oHlI/AlIaUUpRoFUuLaBZHQL8H9W+GoJl1fZQoaAZoCWgPQwhGCI82jth6wJSGlFKUaBVLXWgWR0C/CLY77sOYdX2UKGgGaAloD0MIZkzBGmdVjMCUhpRSlGgVS4BoFkdAvwm3DhtLtnV9lChoBmgJaA9DCIyfxr25DI3AlIaUUpRoFUt2aBZHQL8K/E2HclB1fZQoaAZoCWgPQwgCLPLrB+SUwJSGlFKUaBVLtWgWR0C/DPBmGucMdX2UKGgGaAloD0MITaCIRQxjf8CUhpRSlGgVS1toFkdAvw2n6ab4J3V9lChoBmgJaA9DCHui68LvX4PAlIaUUpRoFUtiaBZHQL8Ocxz7uUl1fZQoaAZoCWgPQwiaXfdWBGiEwJSGlFKUaBVLaGgWR0C/D0jmCAc1dX2UKGgGaAloD0MIjpQtkhZRjsCUhpRSlGgVS4NoFkdAvxBQzqKP4nV9lChoBmgJaA9DCCs1e6AVpXzAlIaUUpRoFUtNaBZHQL8Q6cmShal1fZQoaAZoCWgPQwhKtrqcUrl7wJSGlFKUaBVLX2gWR0C/Eap7kXDWdX2UKGgGaAloD0MI/tKiPlnSmMCUhpRSlGgVS8RoFkdAvxPSE8JUpHV9lChoBmgJaA9DCBtjJ7wUCZLAlIaUUpRoFUuoaBZHQL8VakwevIR1fZQoaAZoCWgPQwjsGFdcXEGGwJSGlFKUaBVLY2gWR0C/FjWdupCKdX2UKGgGaAloD0MIKETAIRT5fcCUhpRSlGgVS0xoFkdAvxbOUW2w3nV9lChoBmgJaA9DCNV5VPxftnrAlIaUUpRoFUtUaBZHQL8XejTrmhd1fZQoaAZoCWgPQwggm+RH3KqowJSGlFKUaBVNPQFoFkdAvxn+ZG8VYnV9lChoBmgJaA9DCJmdRe8UGoPAlIaUUpRoFUtMaBZHQL8alBYFJQN1fZQoaAZoCWgPQwgHCydpPn+BwJSGlFKUaBVLVmgWR0C/G0aY3Ns4dX2UKGgGaAloD0MIpbxWQvcglMCUhpRSlGgVS7JoFkdAvxy5pyp71XV9lChoBmgJaA9DCLKfxVJEgYXAlIaUUpRoFUtVaBZHQL8d2iI+GGp1fZQoaAZoCWgPQwggJuFCfg+ewJSGlFKUaBVL8WgWR0C/IAmyxA0LdX2UKGgGaAloD0MI+OP2y8dJisCUhpRSlGgVS3toFkdAvyD+6d1+zHV9lChoBmgJaA9DCEXURJ/PG3/AlIaUUpRoFUtQaBZHQL8hmrPt2LZ1fZQoaAZoCWgPQwhtV+iDhceBwJSGlFKUaBVLV2gWR0C/Ij7rs0HhdX2UKGgGaAloD0MIN/3Zj7TAhsCUhpRSlGgVS3RoFkdAvyMpMbm2cHV9lChoBmgJaA9DCDB/hcxVDYvAlIaUUpRoFUuKaBZHQL8kMRvWH1x1fZQoaAZoCWgPQwi77UJz/SKBwJSGlFKUaBVLbGgWR0C/JQZRXOnmdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3200000, "n_steps": 5, "gamma": 0.8043961479341653, "gae_lambda": 0.8899866602953548, "ent_coef": 0.03652736951434276, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-107-generic-x86_64-with-glibc2.27 # 121~18.04.1-Ubuntu SMP Thu Mar 24 17:21:33 UTC 2022", "Python": "3.8.0", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "False", "Numpy": "1.24.1", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f632c9aaf490943667579112bf579e29607ada59e6c4158461eae0a0e39406b4
3
+ size 146223
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd2497d8790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd2497d8820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd2497d88b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd2497d8940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd2497d89d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd2497d8a60>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd2497d8af0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd2497d8b80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd2497d8c10>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd2497d8ca0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd2497d8d30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd2497d8dc0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd2497d71b0>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 1000000,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677473265517278406,
52
+ "learning_rate": 0.0358441622999966,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+iWiqBqXkJhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALNuOL0Ep9tAjUKmv8zQO0AUQx8/2ws6PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": 0.0,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2ln0TkUoe8CUhpRSlIwBbJRLVIwBdJRHQL621dRBNVR1fZQoaAZoCWgPQwhd/dgkv+GCwJSGlFKUaBVLjmgWR0C+t/FBIFvAdX2UKGgGaAloD0MIG7luSrmtiMCUhpRSlGgVS6doFkdAvrk2eZof0XV9lChoBmgJaA9DCBXmPc50C3fAlIaUUpRoFUtOaBZHQL650lAu7H11fZQoaAZoCWgPQwhIwylz81eCwJSGlFKUaBVLSmgWR0C+umOVC5VfdX2UKGgGaAloD0MIKPBOPp02gsCUhpRSlGgVS3VoFkdAvrtFaGHpKXV9lChoBmgJaA9DCAfvq3JhUn3AlIaUUpRoFUtRaBZHQL674YqG1x91fZQoaAZoCWgPQwgk8fJ0zsmJwJSGlFKUaBVLhmgWR0C+vOp8a4tpdX2UKGgGaAloD0MIHhZqTRtTo8CUhpRSlGgVTS8BaBZHQL6/Tmdy1eB1fZQoaAZoCWgPQwiUoL/Q4/mAwJSGlFKUaBVLVmgWR0C+v/RZQpF1dX2UKGgGaAloD0MI+OKL9nicjsCUhpRSlGgVS5hoFkdAvsEbg5zYEnV9lChoBmgJaA9DCAiwyK+/CoDAlIaUUpRoFUtPaBZHQL7Bth/y5I91fZQoaAZoCWgPQwjfGAKAQwiLwJSGlFKUaBVLfmgWR0C+wqyJTER8dX2UKGgGaAloD0MI1QYnoj+cncCUhpRSlGgVS+ZoFkdAvsRxrBTGYXV9lChoBmgJaA9DCLWpukc24X7AlIaUUpRoFUtYaBZHQL7FIQ1aW5Z1fZQoaAZoCWgPQwjMDYY6zDGAwJSGlFKUaBVLYGgWR0C+xdoS6DoRdX2UKGgGaAloD0MIbXGNz0SUh8CUhpRSlGgVS2hoFkdAvsao85jpcHV9lChoBmgJaA9DCMd/gSAAwYLAlIaUUpRoFUtcaBZHQL7HZJMQEp11fZQoaAZoCWgPQwiuLqcE5GmAwJSGlFKUaBVLeWgWR0C+yF4mPYFrdX2UKGgGaAloD0MIQlvOpcgqlMCUhpRSlGgVS8poFkdAvsrFzjm0V3V9lChoBmgJaA9DCLCryVN2JIDAlIaUUpRoFUtnaBZHQL7LqSWqtHR1fZQoaAZoCWgPQwgzbmqguR2SwJSGlFKUaBVLl2gWR0C+zOpY5ksjdX2UKGgGaAloD0MI1jpxOV76ecCUhpRSlGgVS2FoFkdAvs2x3gUDdXV9lChoBmgJaA9DCN2zrtFCZJHAlIaUUpRoFUuiaBZHQL7O/qMWGh51fZQoaAZoCWgPQwiRe7q6V/a3wJSGlFKUaBVN6gFoFkdAvtP4q+ajOHV9lChoBmgJaA9DCJ8gsd2djYbAlIaUUpRoFUuLaBZHQL7VF9dNWU91fZQoaAZoCWgPQwgPuK6YkS+BwJSGlFKUaBVLZGgWR0C+1eWLP2PDdX2UKGgGaAloD0MItAHYgIgRgsCUhpRSlGgVS1ZoFkdAvtaVzr/sFHV9lChoBmgJaA9DCLTlXIqbFKnAlIaUUpRoFU04AWgWR0C+2SvPC2tudX2UKGgGaAloD0MIBU1LrIyYgcCUhpRSlGgVS0poFkdAvtofYYixFHV9lChoBmgJaA9DCCZzLO8qZYPAlIaUUpRoFUtdaBZHQL7bUcRUWEd1fZQoaAZoCWgPQwhQOLu1zBSBwJSGlFKUaBVLUWgWR0C+2/MCtA9ndX2UKGgGaAloD0MIGk0uxoATgsCUhpRSlGgVS1xoFkdAvty1xEORT3V9lChoBmgJaA9DCMhAnl2+K4LAlIaUUpRoFUtraBZHQL7djEjxCpp1fZQoaAZoCWgPQwiT4uMTUk+BwJSGlFKUaBVLSWgWR0C+3iR6rvLHdX2UKGgGaAloD0MIb0VigvoJisCUhpRSlGgVS2xoFkdAvt77spoboHV9lChoBmgJaA9DCLmKxW+CnKDAlIaUUpRoFU0KAWgWR0C+4Ssc+7lJdX2UKGgGaAloD0MIc/c5PromhMCUhpRSlGgVS2RoFkdAvuJaQ5myxHV9lChoBmgJaA9DCFHYRdEbSarAlIaUUpRoFU1PAWgWR0C+5YzXOGCadX2UKGgGaAloD0MIChAFM4bqgcCUhpRSlGgVS1FoFkdAvuYvQkX1rnV9lChoBmgJaA9DCAPRkzLp2YPAlIaUUpRoFUtTaBZHQL7m0qYZ2p11fZQoaAZoCWgPQwimuRXC6tmiwJSGlFKUaBVNDwFoFkdAvukPBGhEjXV9lChoBmgJaA9DCH7gKk8gRIPAlIaUUpRoFUtYaBZHQL7p2vkBCD51fZQoaAZoCWgPQwjQX+gR43OEwJSGlFKUaBVLZGgWR0C+6zJlrdnCdX2UKGgGaAloD0MICrsoeiCwlsCUhpRSlGgVS+JoFkdAvu0tmEoOQXV9lChoBmgJaA9DCIxl+iWivYDAlIaUUpRoFUtIaBZHQL7txaxoqTd1fZQoaAZoCWgPQwiRYoBEs6OJwJSGlFKUaBVLmmgWR0C+7wJf6XSjdX2UKGgGaAloD0MIP1WFBoIzgMCUhpRSlGgVS1VoFkdAvu+ucawUxnV9lChoBmgJaA9DCBrCMcs+Y4PAlIaUUpRoFUtmaBZHQL7web9qDbt1fZQoaAZoCWgPQwi4sG68W+SCwJSGlFKUaBVLXGgWR0C+8TJowmE5dX2UKGgGaAloD0MITioaa5+bisCUhpRSlGgVS39oFkdAvvKTFglWwXV9lChoBmgJaA9DCFT+tbxy54bAlIaUUpRoFUtjaBZHQL7z2slLOA11fZQoaAZoCWgPQwhkB5W4TuZ8wJSGlFKUaBVLU2gWR0C+9H336AOKdX2UKGgGaAloD0MIJA7ZQHqxgsCUhpRSlGgVS1toFkdAvvU00pEx7HV9lChoBmgJaA9DCInqrYFNFoTAlIaUUpRoFUt4aBZHQL72KN0NjLB1fZQoaAZoCWgPQwgmxccnZNl/wJSGlFKUaBVLXWgWR0C+9ulSbYsedX2UKGgGaAloD0MI+zvbo5f/gcCUhpRSlGgVS4BoFkdAvvfyki2UjnV9lChoBmgJaA9DCHOc24TbtoTAlIaUUpRoFUteaBZHQL74qjvuw5h1fZQoaAZoCWgPQwiXcOgtXrJ8wJSGlFKUaBVLVWgWR0C++VcK5TZQdX2UKGgGaAloD0MIlugss2iMgcCUhpRSlGgVS1doFkdAvvosiFCb+nV9lChoBmgJaA9DCP578NoF3IPAlIaUUpRoFUtcaBZHQL77YWPcSGt1fZQoaAZoCWgPQwiB6EmZlA+NwJSGlFKUaBVLoWgWR0C+/OE3n6l+dX2UKGgGaAloD0MIzLVoAcrskMCUhpRSlGgVS69oFkdAvv5JKRMewXV9lChoBmgJaA9DCO1imukuc5bAlIaUUpRoFUuwaBZHQL7/ug3Lmp51fZQoaAZoCWgPQwivsyH/HISRwJSGlFKUaBVLmWgWR0C/AO2Zy+6AdX2UKGgGaAloD0MIpDmy8mv3gMCUhpRSlGgVS0loFkdAvwGFHLA573V9lChoBmgJaA9DCPFG5pF/FI7AlIaUUpRoFUuMaBZHQL8DCe+mFal1fZQoaAZoCWgPQwj4qL9ewQeBwJSGlFKUaBVLTGgWR0C/BAqG1x82dX2UKGgGaAloD0MIFoVdFD3Nf8CUhpRSlGgVS0poFkdAvwSnXxvvSnV9lChoBmgJaA9DCIbj+QxItIbAlIaUUpRoFUtuaBZHQL8Fhs8xKxt1fZQoaAZoCWgPQwj5MeauJfh6wJSGlFKUaBVLS2gWR0C/BiA/C66KdX2UKGgGaAloD0MIiIVa03wpfsCUhpRSlGgVS1xoFkdAvwbXrGBFu3V9lChoBmgJaA9DCHvct1oHlI/AlIaUUpRoFUuLaBZHQL8H9W+GoJl1fZQoaAZoCWgPQwhGCI82jth6wJSGlFKUaBVLXWgWR0C/CLY77sOYdX2UKGgGaAloD0MIZkzBGmdVjMCUhpRSlGgVS4BoFkdAvwm3DhtLtnV9lChoBmgJaA9DCIyfxr25DI3AlIaUUpRoFUt2aBZHQL8K/E2HclB1fZQoaAZoCWgPQwgCLPLrB+SUwJSGlFKUaBVLtWgWR0C/DPBmGucMdX2UKGgGaAloD0MITaCIRQxjf8CUhpRSlGgVS1toFkdAvw2n6ab4J3V9lChoBmgJaA9DCHui68LvX4PAlIaUUpRoFUtiaBZHQL8Ocxz7uUl1fZQoaAZoCWgPQwiaXfdWBGiEwJSGlFKUaBVLaGgWR0C/D0jmCAc1dX2UKGgGaAloD0MIjpQtkhZRjsCUhpRSlGgVS4NoFkdAvxBQzqKP4nV9lChoBmgJaA9DCCs1e6AVpXzAlIaUUpRoFUtNaBZHQL8Q6cmShal1fZQoaAZoCWgPQwhKtrqcUrl7wJSGlFKUaBVLX2gWR0C/Eap7kXDWdX2UKGgGaAloD0MI/tKiPlnSmMCUhpRSlGgVS8RoFkdAvxPSE8JUpHV9lChoBmgJaA9DCBtjJ7wUCZLAlIaUUpRoFUuoaBZHQL8VakwevIR1fZQoaAZoCWgPQwjsGFdcXEGGwJSGlFKUaBVLY2gWR0C/FjWdupCKdX2UKGgGaAloD0MIKETAIRT5fcCUhpRSlGgVS0xoFkdAvxbOUW2w3nV9lChoBmgJaA9DCNV5VPxftnrAlIaUUpRoFUtUaBZHQL8XejTrmhd1fZQoaAZoCWgPQwggm+RH3KqowJSGlFKUaBVNPQFoFkdAvxn+ZG8VYnV9lChoBmgJaA9DCJmdRe8UGoPAlIaUUpRoFUtMaBZHQL8alBYFJQN1fZQoaAZoCWgPQwgHCydpPn+BwJSGlFKUaBVLVmgWR0C/G0aY3Ns4dX2UKGgGaAloD0MIpbxWQvcglMCUhpRSlGgVS7JoFkdAvxy5pyp71XV9lChoBmgJaA9DCLKfxVJEgYXAlIaUUpRoFUtVaBZHQL8d2iI+GGp1fZQoaAZoCWgPQwggJuFCfg+ewJSGlFKUaBVL8WgWR0C/IAmyxA0LdX2UKGgGaAloD0MI+OP2y8dJisCUhpRSlGgVS3toFkdAvyD+6d1+zHV9lChoBmgJaA9DCEXURJ/PG3/AlIaUUpRoFUtQaBZHQL8hmrPt2LZ1fZQoaAZoCWgPQwhtV+iDhceBwJSGlFKUaBVLV2gWR0C/Ij7rs0HhdX2UKGgGaAloD0MIN/3Zj7TAhsCUhpRSlGgVS3RoFkdAvyMpMbm2cHV9lChoBmgJaA9DCDB/hcxVDYvAlIaUUpRoFUuKaBZHQL8kMRvWH1x1fZQoaAZoCWgPQwi77UJz/SKBwJSGlFKUaBVLbGgWR0C/JQZRXOnmdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 3200000,
80
+ "n_steps": 5,
81
+ "gamma": 0.8043961479341653,
82
+ "gae_lambda": 0.8899866602953548,
83
+ "ent_coef": 0.03652736951434276,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 16,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a28419c7d5bcdd45f4a74da9c14ccda00927d5535a27e1b818b03d9f1b902e6b
3
+ size 87545
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8894462d5911ac04336f30930b17722ba920ba340fe97aa4f57350ad3d282cc5
3
+ size 43265
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-107-generic-x86_64-with-glibc2.27 # 121~18.04.1-Ubuntu SMP Thu Mar 24 17:21:33 UTC 2022
2
+ - Python: 3.8.0
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (119 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -856.1900397393795, "std_reward": 384.340459532218, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T14:38:41.418759"}