kokovova commited on
Commit
32b8e7a
·
verified ·
1 Parent(s): d545293

End of training

Browse files
Files changed (2) hide show
  1. README.md +153 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3.1
4
+ base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 59d91285-03db-4382-b996-6b34635511e8
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 8b8d3bd2c2672f16_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/8b8d3bd2c2672f16_train_data.json
32
+ type:
33
+ field_instruction: instruction
34
+ field_output: output
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ early_stopping_patience: null
42
+ eval_max_new_tokens: 128
43
+ eval_table_size: null
44
+ flash_attention: false
45
+ fp16: null
46
+ fsdp: null
47
+ fsdp_config: null
48
+ gradient_accumulation_steps: 4
49
+ gradient_checkpointing: true
50
+ group_by_length: true
51
+ hub_model_id: kokovova/59d91285-03db-4382-b996-6b34635511e8
52
+ hub_repo: null
53
+ hub_strategy: checkpoint
54
+ hub_token: null
55
+ learning_rate: 5.0e-05
56
+ load_in_4bit: false
57
+ load_in_8bit: false
58
+ local_rank: null
59
+ logging_steps: 1
60
+ lora_alpha: 64
61
+ lora_dropout: 0.05
62
+ lora_fan_in_fan_out: null
63
+ lora_model_dir: null
64
+ lora_r: 32
65
+ lora_target_linear: true
66
+ lr_scheduler: cosine
67
+ max_memory:
68
+ 0: 72GiB
69
+ max_steps: 50
70
+ micro_batch_size: 2
71
+ mlflow_experiment_name: /tmp/8b8d3bd2c2672f16_train_data.json
72
+ model_type: AutoModelForCausalLM
73
+ num_epochs: 4
74
+ optimizer: adamw_torch
75
+ output_dir: miner_id_24
76
+ pad_to_sequence_len: true
77
+ resume_from_checkpoint: null
78
+ s2_attention: null
79
+ sample_packing: false
80
+ save_steps: 25
81
+ save_strategy: steps
82
+ sequence_len: 2048
83
+ special_tokens:
84
+ pad_token: <|eot_id|>
85
+ strict: false
86
+ tf32: true
87
+ tokenizer_type: AutoTokenizer
88
+ torch_dtype: bfloat16
89
+ train_on_inputs: false
90
+ trust_remote_code: true
91
+ val_set_size: 0.05
92
+ wandb_entity: null
93
+ wandb_mode: online
94
+ wandb_name: 59d91285-03db-4382-b996-6b34635511e8
95
+ wandb_project: Gradients-On-Demand
96
+ wandb_run: your_name
97
+ wandb_runid: 59d91285-03db-4382-b996-6b34635511e8
98
+ warmup_ratio: 0.05
99
+ weight_decay: 0.01
100
+ xformers_attention: true
101
+
102
+ ```
103
+
104
+ </details><br>
105
+
106
+ # 59d91285-03db-4382-b996-6b34635511e8
107
+
108
+ This model is a fine-tuned version of [VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct) on the None dataset.
109
+ It achieves the following results on the evaluation set:
110
+ - Loss: 1.4651
111
+
112
+ ## Model description
113
+
114
+ More information needed
115
+
116
+ ## Intended uses & limitations
117
+
118
+ More information needed
119
+
120
+ ## Training and evaluation data
121
+
122
+ More information needed
123
+
124
+ ## Training procedure
125
+
126
+ ### Training hyperparameters
127
+
128
+ The following hyperparameters were used during training:
129
+ - learning_rate: 5e-05
130
+ - train_batch_size: 2
131
+ - eval_batch_size: 2
132
+ - seed: 42
133
+ - gradient_accumulation_steps: 4
134
+ - total_train_batch_size: 8
135
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
136
+ - lr_scheduler_type: cosine
137
+ - lr_scheduler_warmup_steps: 2
138
+ - training_steps: 50
139
+
140
+ ### Training results
141
+
142
+ | Training Loss | Epoch | Step | Validation Loss |
143
+ |:-------------:|:------:|:----:|:---------------:|
144
+ | 2.3403 | 0.0238 | 50 | 1.4651 |
145
+
146
+
147
+ ### Framework versions
148
+
149
+ - PEFT 0.13.2
150
+ - Transformers 4.46.0
151
+ - Pytorch 2.5.0+cu124
152
+ - Datasets 3.0.1
153
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75607c5fd6f307aa7adb8b0c22d3b90d7ad23af626c9611a776a20b5b164b68e
3
+ size 335706186