Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,102 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
---
|
6 |
+
# NeuralMaxime-7B-slerp-GGUF
|
7 |
+
|
8 |
+
|
9 |
+
## Description
|
10 |
+
|
11 |
+
This repo contains GGUF format model files for NeuralMaxime-7B-slerp-GGUF.
|
12 |
+
|
13 |
+
## Files Provided
|
14 |
+
|
15 |
+
| Name | Quant | Bits | File Size | Remark |
|
16 |
+
| --------------------------------- | ------ | ---- | --------- | -------------------------------- |
|
17 |
+
| neuralmaxime-7b-slerp.IQ3_S.gguf | IQ3_S | 3 | 3.18 GB | 3.44 bpw quantization |
|
18 |
+
| neuralmaxime-7b-slerp.IQ3_M.gguf | IQ3_M | 3 | 3.28 GB | 3.66 bpw quantization mix |
|
19 |
+
| neuralmaxime-7b-slerp.Q4_0.gguf | Q4_0 | 4 | 4.11 GB | 3.56G, +0.2166 ppl |
|
20 |
+
| neuralmaxime-7b-slerp.IQ4_NL.gguf | IQ4_NL | 4 | 4.16 GB | 4.25 bpw non-linear quantization |
|
21 |
+
| neuralmaxime-7b-slerp.Q4_K_M.gguf | Q4_K_M | 4 | 4.37 GB | 3.80G, +0.0532 ppl |
|
22 |
+
| neuralmaxime-7b-slerp.Q5_K_M.gguf | Q5_K_M | 5 | 5.13 GB | 4.45G, +0.0122 ppl |
|
23 |
+
| neuralmaxime-7b-slerp.Q6_K.gguf | Q6_K | 6 | 5.94 GB | 5.15G, +0.0008 ppl |
|
24 |
+
| neuralmaxime-7b-slerp.Q8_0.gguf | Q8_0 | 8 | 7.70 GB | 6.70G, +0.0004 ppl |
|
25 |
+
|
26 |
+
## Parameters
|
27 |
+
|
28 |
+
| path | type | architecture | rope_theta | sliding_win | max_pos_embed |
|
29 |
+
| ----------------------------- | ------- | ------------------ | ---------- | ----------- | ------------- |
|
30 |
+
| Kukedlc/NeuralMaxime-7B-slerp | mistral | MistralForCausalLM | 10000.0 | 4096 | 32768 |
|
31 |
+
|
32 |
+
## Benchmarks
|
33 |
+
|
34 |
+
![](https://i.ibb.co/g7sqr1r/Neural-Maxime-7-B-slerp.png)
|
35 |
+
|
36 |
+
# Original Model Card
|
37 |
+
|
38 |
+
---
|
39 |
+
tags:
|
40 |
+
- merge
|
41 |
+
- mergekit
|
42 |
+
- lazymergekit
|
43 |
+
- mlabonne/AlphaMonarch-7B
|
44 |
+
- mlabonne/NeuralMonarch-7B
|
45 |
+
base_model:
|
46 |
+
- mlabonne/AlphaMonarch-7B
|
47 |
+
- mlabonne/NeuralMonarch-7B
|
48 |
+
license: apache-2.0
|
49 |
+
---
|
50 |
+
|
51 |
+
# NeuralMaxime-7B-slerp
|
52 |
+
|
53 |
+
![](https://raw.githubusercontent.com/kukedlc87/imagenes/main/DALL%C2%B7E%202024-02-18%2015.45.07%20-%20Visualize%20a%20highly%20sophisticated%2C%20high-definition%20robot%20named%20Neural%20Maxime.%20This%20language%20model%20robot%20is%20distinguished%20by%20its%20innovative%20design%2C%20feat.webp)
|
54 |
+
NeuralMaxime-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
|
55 |
+
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
|
56 |
+
* [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B)
|
57 |
+
|
58 |
+
## 🧩 Configuration
|
59 |
+
|
60 |
+
```yaml
|
61 |
+
slices:
|
62 |
+
- sources:
|
63 |
+
- model: mlabonne/AlphaMonarch-7B
|
64 |
+
layer_range: [0, 32]
|
65 |
+
- model: mlabonne/NeuralMonarch-7B
|
66 |
+
layer_range: [0, 32]
|
67 |
+
merge_method: slerp
|
68 |
+
base_model: mlabonne/AlphaMonarch-7B
|
69 |
+
parameters:
|
70 |
+
t:
|
71 |
+
- filter: self_attn
|
72 |
+
value: [0, 0.5, 0.3, 0.7, 1]
|
73 |
+
- filter: mlp
|
74 |
+
value: [1, 0.5, 0.7, 0.3, 0]
|
75 |
+
- value: 0.5
|
76 |
+
dtype: bfloat16
|
77 |
+
```
|
78 |
+
|
79 |
+
## 💻 Usage
|
80 |
+
|
81 |
+
```python
|
82 |
+
!pip install -qU transformers accelerate
|
83 |
+
|
84 |
+
from transformers import AutoTokenizer
|
85 |
+
import transformers
|
86 |
+
import torch
|
87 |
+
|
88 |
+
model = "Kukedlc/NeuralMaxime-7B-slerp"
|
89 |
+
messages = [{"role": "user", "content": "What is a large language model?"}]
|
90 |
+
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
92 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
93 |
+
pipeline = transformers.pipeline(
|
94 |
+
"text-generation",
|
95 |
+
model=model,
|
96 |
+
torch_dtype=torch.float16,
|
97 |
+
device_map="auto",
|
98 |
+
)
|
99 |
+
|
100 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
101 |
+
print(outputs[0]["generated_text"])
|
102 |
+
```
|