kleinay's picture
rm import preprocessing
88e6da4
raw
history blame
10.6 kB
from typing import Optional
import json
from argparse import Namespace
from pathlib import Path
from transformers import Text2TextGenerationPipeline, AutoModelForSeq2SeqLM, AutoTokenizer
def get_markers_for_model(is_t5_model: bool) -> Namespace:
special_tokens_constants = Namespace()
if is_t5_model:
# T5 model have 100 special tokens by default
special_tokens_constants.separator_input_question_predicate = "<extra_id_1>"
special_tokens_constants.separator_output_answers = "<extra_id_3>"
special_tokens_constants.separator_output_questions = "<extra_id_5>" # if using only questions
special_tokens_constants.separator_output_question_answer = "<extra_id_7>"
special_tokens_constants.separator_output_pairs = "<extra_id_9>"
special_tokens_constants.predicate_generic_marker = "<extra_id_10>"
special_tokens_constants.predicate_verb_marker = "<extra_id_11>"
special_tokens_constants.predicate_nominalization_marker = "<extra_id_12>"
else:
special_tokens_constants.separator_input_question_predicate = "<question_predicate_sep>"
special_tokens_constants.separator_output_answers = "<answers_sep>"
special_tokens_constants.separator_output_questions = "<question_sep>" # if using only questions
special_tokens_constants.separator_output_question_answer = "<question_answer_sep>"
special_tokens_constants.separator_output_pairs = "<qa_pairs_sep>"
special_tokens_constants.predicate_generic_marker = "<predicate_marker>"
special_tokens_constants.predicate_verb_marker = "<verbal_predicate_marker>"
special_tokens_constants.predicate_nominalization_marker = "<nominalization_predicate_marker>"
return special_tokens_constants
def load_trained_model(name_or_path):
import huggingface_hub as HFhub
tokenizer = AutoTokenizer.from_pretrained(name_or_path)
model = AutoModelForSeq2SeqLM.from_pretrained(name_or_path)
# load preprocessing_kwargs from the model repo on HF hub, or from the local model directory
kwargs_filename = None
if name_or_path.startswith("kleinay/") and 'preprocessing_kwargs.json' in HFhub.list_repo_files(name_or_path):
kwargs_filename = HFhub.hf_hub_download(repo_id=name_or_path, filename="preprocessing_kwargs.json")
elif Path(name_or_path).is_dir() and (Path(name_or_path) / "experiment_kwargs.json").exists():
kwargs_filename = Path(name_or_path) / "experiment_kwargs.json"
if kwargs_filename:
preprocessing_kwargs = json.load(open(kwargs_filename))
# integrate into model.config (for decoding args, e.g. "num_beams"), and save also as standalone object for preprocessing
model.config.preprocessing_kwargs = Namespace(**preprocessing_kwargs)
model.config.update(preprocessing_kwargs)
return model, tokenizer
class QASRL_Pipeline(Text2TextGenerationPipeline):
def __init__(self, model_repo: str, **kwargs):
model, tokenizer = load_trained_model(model_repo)
super().__init__(model, tokenizer, framework="pt")
self.is_t5_model = "t5" in model.config.model_type
self.special_tokens = get_markers_for_model(self.is_t5_model)
# self.preprocessor = preprocessing.Preprocessor(model.config.preprocessing_kwargs, self.special_tokens)
self.data_args = model.config.preprocessing_kwargs
# backward compatibility - default keyword values implemeted in `run_summarization`, thus not saved in `preprocessing_kwargs`
if "predicate_marker_type" not in vars(self.data_args):
self.data_args.predicate_marker_type = "generic"
if "use_bilateral_predicate_marker" not in vars(self.data_args):
self.data_args.use_bilateral_predicate_marker = True
if "append_verb_form" not in vars(self.data_args):
self.data_args.append_verb_form = True
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs, forward_kwargs, postprocess_kwargs = {}, {}, {} # super()._sanitize_parameters(**kwargs)
if "predicate_marker" in kwargs:
preprocess_kwargs["predicate_marker"] = kwargs["predicate_marker"]
if "predicate_type" in kwargs:
preprocess_kwargs["predicate_type"] = kwargs["predicate_type"]
if "verb_form" in kwargs:
preprocess_kwargs["verb_form"] = kwargs["verb_form"]
return preprocess_kwargs, forward_kwargs, postprocess_kwargs
def preprocess(self, inputs, predicate_marker="<predicate>", predicate_type=None, verb_form=None):
# Here, inputs is string or list of strings; apply string postprocessing
if isinstance(inputs, str):
processed_inputs = self._preprocess_string(inputs, predicate_marker, predicate_type, verb_form)
elif hasattr(inputs, "__iter__"):
processed_inputs = [self._preprocess_string(s, predicate_marker, predicate_type, verb_form) for s in inputs]
else:
raise ValueError("inputs must be str or Iterable[str]")
# Now pass to super.preprocess for tokenization
return super().preprocess(processed_inputs)
def _preprocess_string(self, seq: str, predicate_marker: str, predicate_type: Optional[str], verb_form: Optional[str]) -> str:
sent_tokens = seq.split(" ")
assert predicate_marker in sent_tokens, f"Input sentence must include a predicate-marker token ('{predicate_marker}') before the target predicate word"
predicate_idx = sent_tokens.index(predicate_marker)
sent_tokens.remove(predicate_marker)
sentence_before_predicate = " ".join([sent_tokens[i] for i in range(predicate_idx)])
predicate = sent_tokens[predicate_idx]
sentence_after_predicate = " ".join([sent_tokens[i] for i in range(predicate_idx+1, len(sent_tokens))])
if self.data_args.predicate_marker_type == "generic":
predicate_marker = self.special_tokens.predicate_generic_marker
# In case we want special marker for each predicate type: """
elif self.data_args.predicate_marker_type == "pred_type":
assert predicate_type is not None, "For this model, you must provide the `predicate_type` either when initializing QASRL_Pipeline(...) or when applying __call__(...) on it"
assert predicate_type in ("verbal", "nominal"), f"`predicate_type` must be either 'verbal' or 'nominal'; got '{predicate_type}'"
predicate_marker = {"verbal": self.special_tokens.predicate_verb_marker ,
"nominal": self.special_tokens.predicate_nominalization_marker
}[predicate_type]
if self.data_args.use_bilateral_predicate_marker:
seq = f"{sentence_before_predicate} {predicate_marker} {predicate} {predicate_marker} {sentence_after_predicate}"
else:
seq = f"{sentence_before_predicate} {predicate_marker} {predicate} {sentence_after_predicate}"
# embed also verb_form
if self.data_args.append_verb_form and verb_form is None:
raise ValueError(f"For this model, you must provide the `verb_form` of the predicate when applying __call__(...)")
elif self.data_args.append_verb_form:
seq = f"{seq} {self.special_tokens.separator_input_question_predicate} {verb_form} "
else:
seq = f"{seq} "
# append source prefix (for t5 models)
prefix = self._get_source_prefix(predicate_type)
return prefix + seq
def _get_source_prefix(self, predicate_type: Optional[str]):
if not self.is_t5_model or self.data_args.source_prefix is None:
return ''
if "Generate QAs for <predicate_type> QASRL: " in self.data_args.source_prefix:
if predicate_type is None:
raise ValueError("source_prefix includes 'Generate QAs for <predicate_type> QASRL: ' but input has no `predicate_type`.")
if self.data_args.source_prefix == "Generate QAs for <predicate_type> QASRL: ": # backwrad compatibility - "Generate QAs for <predicate_type> QASRL: " alone was a sign for a longer prefix
return f"Generate QAs for {predicate_type} QASRL: "
else:
return self.data_args.source_prefix.replace("Generate QAs for <predicate_type> QASRL: ", predicate_type)
else:
return self.data_args.source_prefix
def _forward(self, *args, **kwargs):
outputs = super()._forward(*args, **kwargs)
return outputs
def postprocess(self, model_outputs):
output_seq = self.tokenizer.decode(
model_outputs["output_ids"][0],
skip_special_tokens=False,
clean_up_tokenization_spaces=False,
)
output_seq = output_seq.strip(self.tokenizer.pad_token).strip(self.tokenizer.eos_token).strip()
qa_subseqs = output_seq.split(self.special_tokens.separator_output_pairs)
qas = [self._postrocess_qa(qa_subseq) for qa_subseq in qa_subseqs]
return {"generated_text": output_seq,
"QAs": qas}
def _postrocess_qa(self, seq: str) -> str:
# split question and answers
if self.special_tokens.separator_output_question_answer in seq:
question, answer = seq.split(self.special_tokens.separator_output_question_answer)[:2]
else:
print("invalid format: no separator between question and answer found...")
return None
# question, answer = seq, '' # Or: backoff to only question
# skip "_" slots in questions
question = ' '.join(t for t in question.split(' ') if t != '_')
answers = [a.strip() for a in answer.split(self.special_tokens.separator_output_answers)]
return {"question": question, "answers": answers}
if __name__ == "__main__":
pipe = QASRL_Pipeline("kleinay/qanom-seq2seq-model-baseline")
res1 = pipe("The student was interested in Luke 's <predicate> research about see animals .", verb_form="research", predicate_type="nominal")
res2 = pipe(["The doctor was interested in Luke 's <predicate> treatment .",
"The Veterinary student was interested in Luke 's <predicate> treatment of sea animals ."], verb_form="treat", predicate_type="nominal", num_beams=10)
res3 = pipe("A number of professions have <predicate> developed that specialize in the treatment of mental disorders .", verb_form="develop", predicate_type="verbal")
print(res1)
print(res2)
print(res3)