Upload tokenization_korscideberta_v2.py
Browse files- tokenization_korscideberta_v2.py +580 -0
tokenization_korscideberta_v2.py
ADDED
@@ -0,0 +1,580 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Microsoft and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization class for model DeBERTa."""
|
16 |
+
|
17 |
+
import os
|
18 |
+
import unicodedata
|
19 |
+
from typing import Any, Dict, List, Optional, Tuple
|
20 |
+
|
21 |
+
import sentencepiece as sp
|
22 |
+
|
23 |
+
from transformers import AddedToken, PreTrainedTokenizer
|
24 |
+
from transformers import logging
|
25 |
+
#2023. 7. 28. 형태소 분리(Mecab), 유니코드 정규화 추가
|
26 |
+
from konlpy.tag import Mecab
|
27 |
+
from unicode import join_jamos
|
28 |
+
from normalize import MosesPunctNormalizer
|
29 |
+
nor = MosesPunctNormalizer()
|
30 |
+
|
31 |
+
def has_coda(word):
|
32 |
+
return (ord(word[-1]) -44032)%28==0
|
33 |
+
def _replace_unicode(line):
|
34 |
+
if(line==None):
|
35 |
+
return ""
|
36 |
+
line = line.replace("—",'-').replace("―","-").replace("–","-").replace(""",'"').replace("'","'").replace("‹","<").replace("›",">").replace("‚","'").replace("‛","'").replace("„",'"').replace("‟",'"').replace("«",'<').replace("»",'>').replace("˝",'"').replace("(",'(').replace(")",')').replace("『",'"').replace("』",'"').replace("“",'"').replace("”",'"').replace("‘","'").replace("’","'").replace("《","<").replace("》",">").replace("〈","<").replace("〉",">").replace("「","'").replace("」","'").replace("【","[").replace("】","]").replace("〔","[").replace("〕","]").replace("[","[").replace("]","]").replace("{","{").replace("}","}")
|
37 |
+
line=nor.replace_unicode_punct(line)
|
38 |
+
return line
|
39 |
+
def _mecab(line):
|
40 |
+
mecab = Mecab()
|
41 |
+
#참고: VV동사 VA형용사 VX보조 용언 VCP긍정 지정사 VCN부정 지정사 JKS주격 조사 JKC보격 조사, … XSN명사 파생 접미사 XSV동사 파생 접미사 XSA형용사 파생 접미사 EP선어말 어미 EF종결 어미 EC연결 어미 ETN명사형 전성 어미 ETM관형형 전성 어미
|
42 |
+
|
43 |
+
pdoc = []
|
44 |
+
morphs = []
|
45 |
+
|
46 |
+
poss = mecab.pos(line)
|
47 |
+
for pos in poss:
|
48 |
+
morphs.append(pos[0])
|
49 |
+
'''
|
50 |
+
pdoc.append(" ".join(morphs))
|
51 |
+
return pdoc
|
52 |
+
'''
|
53 |
+
return " ".join(morphs)
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
58 |
+
"vocab_file": {
|
59 |
+
"microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/spm.model",
|
60 |
+
"microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/spm.model",
|
61 |
+
"microsoft/deberta-v2-xlarge-mnli": (
|
62 |
+
"https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/spm.model"
|
63 |
+
),
|
64 |
+
"microsoft/deberta-v2-xxlarge-mnli": (
|
65 |
+
"https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/spm.model"
|
66 |
+
),
|
67 |
+
}
|
68 |
+
}
|
69 |
+
|
70 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
71 |
+
"microsoft/deberta-v2-xlarge": 512,
|
72 |
+
"microsoft/deberta-v2-xxlarge": 512,
|
73 |
+
"microsoft/deberta-v2-xlarge-mnli": 512,
|
74 |
+
"microsoft/deberta-v2-xxlarge-mnli": 512,
|
75 |
+
}
|
76 |
+
|
77 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
78 |
+
"microsoft/deberta-v2-xlarge": {"do_lower_case": False},
|
79 |
+
"microsoft/deberta-v2-xxlarge": {"do_lower_case": False},
|
80 |
+
"microsoft/deberta-v2-xlarge-mnli": {"do_lower_case": False},
|
81 |
+
"microsoft/deberta-v2-xxlarge-mnli": {"do_lower_case": False},
|
82 |
+
}
|
83 |
+
|
84 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spm.model"}
|
85 |
+
|
86 |
+
|
87 |
+
class DebertaV2Tokenizer(PreTrainedTokenizer):
|
88 |
+
r"""
|
89 |
+
Constructs a DeBERTa-v2 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
90 |
+
|
91 |
+
Args:
|
92 |
+
vocab_file (`str`):
|
93 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
94 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
95 |
+
do_lower_case (`bool`, *optional*, defaults to `False`):
|
96 |
+
Whether or not to lowercase the input when tokenizing.
|
97 |
+
bos_token (`string`, *optional*, defaults to `"[CLS]"`):
|
98 |
+
The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token.
|
99 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
100 |
+
sequence. The token used is the `cls_token`.
|
101 |
+
eos_token (`string`, *optional*, defaults to `"[SEP]"`):
|
102 |
+
The end of sequence token. When building a sequence using special tokens, this is not the token that is
|
103 |
+
used for the end of sequence. The token used is the `sep_token`.
|
104 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
105 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
106 |
+
token instead.
|
107 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
108 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
109 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
110 |
+
token of a sequence built with special tokens.
|
111 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
112 |
+
The token used for padding, for example when batching sequences of different lengths.
|
113 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
114 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
115 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
116 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
117 |
+
The token used for masking values. This is the token used when training this model with masked language
|
118 |
+
modeling. This is the token which the model will try to predict.
|
119 |
+
sp_model_kwargs (`dict`, *optional*):
|
120 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
121 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
122 |
+
to set:
|
123 |
+
|
124 |
+
- `enable_sampling`: Enable subword regularization.
|
125 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
126 |
+
|
127 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
128 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
129 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
130 |
+
using forward-filtering-and-backward-sampling algorithm.
|
131 |
+
|
132 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
133 |
+
BPE-dropout.
|
134 |
+
"""
|
135 |
+
|
136 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
137 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
138 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
139 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
140 |
+
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
vocab_file,
|
144 |
+
do_lower_case=False,
|
145 |
+
split_by_punct=False,
|
146 |
+
bos_token="[CLS]",
|
147 |
+
eos_token="[SEP]",
|
148 |
+
unk_token="[UNK]",
|
149 |
+
sep_token="[SEP]",
|
150 |
+
pad_token="[PAD]",
|
151 |
+
cls_token="[CLS]",
|
152 |
+
mask_token="[MASK]",
|
153 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
154 |
+
**kwargs,
|
155 |
+
) -> None:
|
156 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
157 |
+
|
158 |
+
if not os.path.isfile(vocab_file):
|
159 |
+
raise ValueError(
|
160 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
161 |
+
" model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
162 |
+
)
|
163 |
+
self.do_lower_case = do_lower_case
|
164 |
+
self.split_by_punct = split_by_punct
|
165 |
+
self.vocab_file = vocab_file
|
166 |
+
self._tokenizer = SPMTokenizer(
|
167 |
+
vocab_file, None, split_by_punct=split_by_punct, sp_model_kwargs=self.sp_model_kwargs
|
168 |
+
)
|
169 |
+
unk_token = AddedToken(unk_token, normalized=True, special=True) if isinstance(unk_token, str) else unk_token
|
170 |
+
super().__init__(
|
171 |
+
do_lower_case=do_lower_case,
|
172 |
+
bos_token=bos_token,
|
173 |
+
eos_token=eos_token,
|
174 |
+
unk_token=unk_token,
|
175 |
+
sep_token=sep_token,
|
176 |
+
pad_token=pad_token,
|
177 |
+
cls_token=cls_token,
|
178 |
+
mask_token=mask_token,
|
179 |
+
split_by_punct=split_by_punct,
|
180 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
181 |
+
**kwargs,
|
182 |
+
)
|
183 |
+
self._tokenizer.special_tokens = self.all_special_tokens
|
184 |
+
|
185 |
+
@property
|
186 |
+
def vocab_size(self):
|
187 |
+
return len(self.vocab)
|
188 |
+
|
189 |
+
@property
|
190 |
+
def vocab(self):
|
191 |
+
return self._tokenizer.vocab
|
192 |
+
|
193 |
+
def get_vocab(self):
|
194 |
+
vocab = self.vocab.copy()
|
195 |
+
vocab.update(self.get_added_vocab())
|
196 |
+
return vocab
|
197 |
+
|
198 |
+
def _tokenize(self, text: str) -> List[str]:
|
199 |
+
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
|
200 |
+
if self.do_lower_case:
|
201 |
+
text = text.lower()
|
202 |
+
return self._tokenizer.tokenize(text)
|
203 |
+
|
204 |
+
def _convert_token_to_id(self, token):
|
205 |
+
"""Converts a token (str) in an id using the vocab."""
|
206 |
+
return self._tokenizer.spm.PieceToId(token)
|
207 |
+
|
208 |
+
def _convert_id_to_token(self, index):
|
209 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
210 |
+
return self._tokenizer.spm.IdToPiece(index) if index < self.vocab_size else self.unk_token
|
211 |
+
|
212 |
+
def convert_tokens_to_string(self, tokens):
|
213 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
214 |
+
return self._tokenizer.decode(tokens)
|
215 |
+
|
216 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
217 |
+
"""
|
218 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
219 |
+
adding special tokens. A DeBERTa sequence has the following format:
|
220 |
+
|
221 |
+
- single sequence: [CLS] X [SEP]
|
222 |
+
- pair of sequences: [CLS] A [SEP] B [SEP]
|
223 |
+
|
224 |
+
Args:
|
225 |
+
token_ids_0 (`List[int]`):
|
226 |
+
List of IDs to which the special tokens will be added.
|
227 |
+
token_ids_1 (`List[int]`, *optional*):
|
228 |
+
Optional second list of IDs for sequence pairs.
|
229 |
+
|
230 |
+
Returns:
|
231 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
232 |
+
"""
|
233 |
+
|
234 |
+
if token_ids_1 is None:
|
235 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
236 |
+
cls = [self.cls_token_id]
|
237 |
+
sep = [self.sep_token_id]
|
238 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
239 |
+
|
240 |
+
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
|
241 |
+
"""
|
242 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
243 |
+
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
token_ids_0 (`List[int]`):
|
247 |
+
List of IDs.
|
248 |
+
token_ids_1 (`List[int]`, *optional*):
|
249 |
+
Optional second list of IDs for sequence pairs.
|
250 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
251 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
255 |
+
"""
|
256 |
+
|
257 |
+
if already_has_special_tokens:
|
258 |
+
return super().get_special_tokens_mask(
|
259 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
260 |
+
)
|
261 |
+
|
262 |
+
if token_ids_1 is not None:
|
263 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
264 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
265 |
+
|
266 |
+
def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
|
267 |
+
"""
|
268 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
|
269 |
+
sequence pair mask has the following format:
|
270 |
+
|
271 |
+
```
|
272 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
273 |
+
| first sequence | second sequence |
|
274 |
+
```
|
275 |
+
|
276 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
277 |
+
|
278 |
+
Args:
|
279 |
+
token_ids_0 (`List[int]`):
|
280 |
+
List of IDs.
|
281 |
+
token_ids_1 (`List[int]`, *optional*):
|
282 |
+
Optional second list of IDs for sequence pairs.
|
283 |
+
|
284 |
+
Returns:
|
285 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
286 |
+
"""
|
287 |
+
sep = [self.sep_token_id]
|
288 |
+
cls = [self.cls_token_id]
|
289 |
+
if token_ids_1 is None:
|
290 |
+
return len(cls + token_ids_0 + sep) * [0]
|
291 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
292 |
+
|
293 |
+
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
294 |
+
add_prefix_space = kwargs.pop("add_prefix_space", False)
|
295 |
+
if is_split_into_words or add_prefix_space:
|
296 |
+
text = " " + text
|
297 |
+
return (text, kwargs)
|
298 |
+
|
299 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
300 |
+
return self._tokenizer.save_pretrained(save_directory, filename_prefix=filename_prefix)
|
301 |
+
|
302 |
+
|
303 |
+
class SPMTokenizer:
|
304 |
+
r"""
|
305 |
+
Constructs a tokenizer based on [SentencePiece](https://github.com/google/sentencepiece).
|
306 |
+
|
307 |
+
Args:
|
308 |
+
vocab_file (`str`):
|
309 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
310 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
311 |
+
sp_model_kwargs (`dict`, *optional*):
|
312 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
313 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
314 |
+
to set:
|
315 |
+
|
316 |
+
- `enable_sampling`: Enable subword regularization.
|
317 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
318 |
+
|
319 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
320 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
321 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
322 |
+
using forward-filtering-and-backward-sampling algorithm.
|
323 |
+
|
324 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
325 |
+
BPE-dropout.
|
326 |
+
"""
|
327 |
+
|
328 |
+
def __init__(
|
329 |
+
self, vocab_file, special_tokens, split_by_punct=False, sp_model_kwargs: Optional[Dict[str, Any]] = None
|
330 |
+
):
|
331 |
+
self.split_by_punct = split_by_punct
|
332 |
+
self.vocab_file = vocab_file
|
333 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
334 |
+
spm = sp.SentencePieceProcessor(**self.sp_model_kwargs)
|
335 |
+
if not os.path.exists(vocab_file):
|
336 |
+
raise FileNotFoundError(f"{vocab_file} does not exist!")
|
337 |
+
spm.load(vocab_file)
|
338 |
+
bpe_vocab_size = spm.GetPieceSize()
|
339 |
+
# Token map
|
340 |
+
# <unk> 0+1
|
341 |
+
# <s> 1+1
|
342 |
+
# </s> 2+1
|
343 |
+
self.vocab = {spm.IdToPiece(i): i for i in range(bpe_vocab_size)}
|
344 |
+
self.ids_to_tokens = [spm.IdToPiece(i) for i in range(bpe_vocab_size)]
|
345 |
+
# self.vocab['[PAD]'] = 0
|
346 |
+
# self.vocab['[CLS]'] = 1
|
347 |
+
# self.vocab['[SEP]'] = 2
|
348 |
+
# self.vocab['[UNK]'] = 3
|
349 |
+
|
350 |
+
self.spm = spm
|
351 |
+
self.special_tokens = special_tokens
|
352 |
+
|
353 |
+
def __getstate__(self):
|
354 |
+
state = self.__dict__.copy()
|
355 |
+
state["spm"] = None
|
356 |
+
return state
|
357 |
+
|
358 |
+
def __setstate__(self, d):
|
359 |
+
self.__dict__ = d
|
360 |
+
|
361 |
+
# for backward compatibility
|
362 |
+
if not hasattr(self, "sp_model_kwargs"):
|
363 |
+
self.sp_model_kwargs = {}
|
364 |
+
|
365 |
+
self.spm = sp.SentencePieceProcessor(**self.sp_model_kwargs)
|
366 |
+
self.spm.Load(self.vocab_file)
|
367 |
+
|
368 |
+
def tokenize(self, text):
|
369 |
+
text = _replace_unicode(text) #유니코드 정규화
|
370 |
+
text = _mecab(text) #형태소 분리
|
371 |
+
return self._encode_as_pieces(text)
|
372 |
+
|
373 |
+
def convert_ids_to_tokens(self, ids):
|
374 |
+
tokens = []
|
375 |
+
for i in ids:
|
376 |
+
tokens.append(self.ids_to_tokens[i])
|
377 |
+
return tokens
|
378 |
+
|
379 |
+
def decode(self, tokens, start=-1, end=-1, raw_text=None):
|
380 |
+
if raw_text is None:
|
381 |
+
current_sub_tokens = []
|
382 |
+
out_string = ""
|
383 |
+
prev_is_special = False
|
384 |
+
for token in tokens:
|
385 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
386 |
+
if token in self.special_tokens:
|
387 |
+
if not prev_is_special:
|
388 |
+
out_string += " "
|
389 |
+
out_string += self.spm.decode_pieces(current_sub_tokens) + token
|
390 |
+
prev_is_special = True
|
391 |
+
current_sub_tokens = []
|
392 |
+
else:
|
393 |
+
current_sub_tokens.append(token)
|
394 |
+
prev_is_special = False
|
395 |
+
out_string += self.spm.decode_pieces(current_sub_tokens)
|
396 |
+
return out_string.strip()
|
397 |
+
else:
|
398 |
+
words = self.split_to_words(raw_text)
|
399 |
+
word_tokens = [self.tokenize(w) for w in words]
|
400 |
+
token2words = [0] * len(tokens)
|
401 |
+
tid = 0
|
402 |
+
for i, w in enumerate(word_tokens):
|
403 |
+
for k, t in enumerate(w):
|
404 |
+
token2words[tid] = i
|
405 |
+
tid += 1
|
406 |
+
word_start = token2words[start]
|
407 |
+
word_end = token2words[end] if end < len(tokens) else len(words)
|
408 |
+
text = "".join(words[word_start:word_end])
|
409 |
+
return text
|
410 |
+
|
411 |
+
# TODO add a deprecation cycle as this can have different behaviour from our API
|
412 |
+
def add_special_token(self, token):
|
413 |
+
if token not in self.special_tokens:
|
414 |
+
self.special_tokens.append(token)
|
415 |
+
if token not in self.vocab:
|
416 |
+
self.vocab[token] = len(self.vocab) - 1
|
417 |
+
self.ids_to_tokens.append(token)
|
418 |
+
return self.id(token)
|
419 |
+
|
420 |
+
def part_of_whole_word(self, token, is_bos=False):
|
421 |
+
logger.warning_once(
|
422 |
+
"The `DebertaTokenizer.part_of_whole_word` method is deprecated and will be removed in `transformers==4.35`"
|
423 |
+
)
|
424 |
+
if is_bos:
|
425 |
+
return True
|
426 |
+
if (
|
427 |
+
len(token) == 1
|
428 |
+
and (_is_whitespace(list(token)[0]) or _is_control(list(token)[0]) or _is_punctuation(list(token)[0]))
|
429 |
+
) or token in self.special_tokens:
|
430 |
+
return False
|
431 |
+
|
432 |
+
word_start = b"\xe2\x96\x81".decode("utf-8")
|
433 |
+
return not token.startswith(word_start)
|
434 |
+
|
435 |
+
def pad(self):
|
436 |
+
return "[PAD]"
|
437 |
+
|
438 |
+
def bos(self):
|
439 |
+
return "[CLS]"
|
440 |
+
|
441 |
+
def eos(self):
|
442 |
+
return "[SEP]"
|
443 |
+
|
444 |
+
def unk(self):
|
445 |
+
return "[UNK]"
|
446 |
+
|
447 |
+
def mask(self):
|
448 |
+
return "[MASK]"
|
449 |
+
|
450 |
+
def sym(self, id):
|
451 |
+
return self.ids_to_tokens[id]
|
452 |
+
|
453 |
+
def id(self, sym):
|
454 |
+
logger.warning_once(
|
455 |
+
"The `DebertaTokenizer.id` method is deprecated and will be removed in `transformers==4.35`"
|
456 |
+
)
|
457 |
+
return self.vocab[sym] if sym in self.vocab else 1
|
458 |
+
|
459 |
+
def _encode_as_pieces(self, text):
|
460 |
+
text = convert_to_unicode(text)
|
461 |
+
if self.split_by_punct:
|
462 |
+
words = self._run_split_on_punc(text)
|
463 |
+
pieces = [self.spm.encode(w, out_type=str) for w in words]
|
464 |
+
return [p for w in pieces for p in w]
|
465 |
+
else:
|
466 |
+
return self.spm.encode(text, out_type=str)
|
467 |
+
|
468 |
+
def split_to_words(self, text):
|
469 |
+
pieces = self._encode_as_pieces(text)
|
470 |
+
word_start = b"\xe2\x96\x81".decode("utf-8")
|
471 |
+
words = []
|
472 |
+
offset = 0
|
473 |
+
prev_end = 0
|
474 |
+
for i, p in enumerate(pieces):
|
475 |
+
if p.startswith(word_start):
|
476 |
+
if offset > prev_end:
|
477 |
+
words.append(text[prev_end:offset])
|
478 |
+
prev_end = offset
|
479 |
+
w = p.replace(word_start, "")
|
480 |
+
else:
|
481 |
+
w = p
|
482 |
+
try:
|
483 |
+
s = text.index(w, offset)
|
484 |
+
pn = ""
|
485 |
+
k = i + 1
|
486 |
+
while k < len(pieces):
|
487 |
+
pn = pieces[k].replace(word_start, "")
|
488 |
+
if len(pn) > 0:
|
489 |
+
break
|
490 |
+
k += 1
|
491 |
+
|
492 |
+
if len(pn) > 0 and pn in text[offset:s]:
|
493 |
+
offset = offset + 1
|
494 |
+
else:
|
495 |
+
offset = s + len(w)
|
496 |
+
except Exception:
|
497 |
+
offset = offset + 1
|
498 |
+
|
499 |
+
if prev_end < offset:
|
500 |
+
words.append(text[prev_end:offset])
|
501 |
+
|
502 |
+
return words
|
503 |
+
|
504 |
+
def _run_split_on_punc(self, text):
|
505 |
+
"""Splits punctuation on a piece of text."""
|
506 |
+
chars = list(text)
|
507 |
+
i = 0
|
508 |
+
start_new_word = True
|
509 |
+
output = []
|
510 |
+
while i < len(chars):
|
511 |
+
char = chars[i]
|
512 |
+
if _is_punctuation(char):
|
513 |
+
output.append([char])
|
514 |
+
start_new_word = True
|
515 |
+
else:
|
516 |
+
if start_new_word:
|
517 |
+
output.append([])
|
518 |
+
start_new_word = False
|
519 |
+
output[-1].append(char)
|
520 |
+
i += 1
|
521 |
+
|
522 |
+
return ["".join(x) for x in output]
|
523 |
+
|
524 |
+
def save_pretrained(self, path: str, filename_prefix: str = None):
|
525 |
+
filename = VOCAB_FILES_NAMES[list(VOCAB_FILES_NAMES.keys())[0]]
|
526 |
+
if filename_prefix is not None:
|
527 |
+
filename = filename_prefix + "-" + filename
|
528 |
+
full_path = os.path.join(path, filename)
|
529 |
+
with open(full_path, "wb") as fs:
|
530 |
+
fs.write(self.spm.serialized_model_proto())
|
531 |
+
return (full_path,)
|
532 |
+
|
533 |
+
|
534 |
+
def _is_whitespace(char):
|
535 |
+
"""Checks whether `chars` is a whitespace character."""
|
536 |
+
# \t, \n, and \r are technically control characters but we treat them
|
537 |
+
# as whitespace since they are generally considered as such.
|
538 |
+
if char == " " or char == "\t" or char == "\n" or char == "\r":
|
539 |
+
return True
|
540 |
+
cat = unicodedata.category(char)
|
541 |
+
if cat == "Zs":
|
542 |
+
return True
|
543 |
+
return False
|
544 |
+
|
545 |
+
|
546 |
+
def _is_control(char):
|
547 |
+
"""Checks whether `chars` is a control character."""
|
548 |
+
# These are technically control characters but we count them as whitespace
|
549 |
+
# characters.
|
550 |
+
if char == "\t" or char == "\n" or char == "\r":
|
551 |
+
return False
|
552 |
+
cat = unicodedata.category(char)
|
553 |
+
if cat.startswith("C"):
|
554 |
+
return True
|
555 |
+
return False
|
556 |
+
|
557 |
+
|
558 |
+
def _is_punctuation(char):
|
559 |
+
"""Checks whether `chars` is a punctuation character."""
|
560 |
+
cp = ord(char)
|
561 |
+
# We treat all non-letter/number ASCII as punctuation.
|
562 |
+
# Characters such as "^", "$", and "`" are not in the Unicode
|
563 |
+
# Punctuation class but we treat them as punctuation anyways, for
|
564 |
+
# consistency.
|
565 |
+
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
|
566 |
+
return True
|
567 |
+
cat = unicodedata.category(char)
|
568 |
+
if cat.startswith("P"):
|
569 |
+
return True
|
570 |
+
return False
|
571 |
+
|
572 |
+
|
573 |
+
def convert_to_unicode(text):
|
574 |
+
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
|
575 |
+
if isinstance(text, str):
|
576 |
+
return text
|
577 |
+
elif isinstance(text, bytes):
|
578 |
+
return text.decode("utf-8", "ignore")
|
579 |
+
else:
|
580 |
+
raise ValueError(f"Unsupported string type: {type(text)}")
|