Upload korscideberta-colab.py
Browse files- korscideberta-colab.py +187 -0
korscideberta-colab.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""korscideberta.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1vJNUG_F5El5LY8xmmwRVXo66bYBfXtdz
|
8 |
+
"""
|
9 |
+
|
10 |
+
#!git clone https://huggingface.co/kisti/korscideberta; cd korscideberta
|
11 |
+
|
12 |
+
# Commented out IPython magic to ensure Python compatibility.
|
13 |
+
#!pwd
|
14 |
+
#%cd ..
|
15 |
+
#!pip install konlpy
|
16 |
+
# %cd korscideberta
|
17 |
+
|
18 |
+
# Commented out IPython magic to ensure Python compatibility.
|
19 |
+
'''
|
20 |
+
! git clone https://github.com/SOMJANG/Mecab-ko-for-Google-Colab.git
|
21 |
+
# %cd Mecab-ko-for-Google-Colab/
|
22 |
+
! bash install_mecab-ko_on_colab_light_220429.sh
|
23 |
+
# %cd ..
|
24 |
+
!pip install datasets transformers[sentencepiece]
|
25 |
+
'''
|
26 |
+
|
27 |
+
# Commented out IPython magic to ensure Python compatibility.
|
28 |
+
'''
|
29 |
+
!pip install -U accelerate; pip install -U transformers; pip install pydantic==1.8
|
30 |
+
'''
|
31 |
+
|
32 |
+
!pwd
|
33 |
+
# %cd /content/korscideberta
|
34 |
+
|
35 |
+
'''
|
36 |
+
#[ํ์]๋ฆฌ๋
์ค ํฐ๋ฏธ๋์์ ๋ณธ ์ฝ๋ ๋ฐ ํ ํฌ๋์ด์ ๋ค์ด๋ก๋
|
37 |
+
#git clone https://huggingface.co/kisti/korscideberta
|
38 |
+
#cd korscideberta
|
39 |
+
|
40 |
+
#[ํ์]๋ผ์ด๋ธ๋ฌ๋ฆฌ ์ค์น(Mecab ๋ฑ ์์ธํ ์ค์น ๋ฐฉ๋ฒ์ KorSciDeBERTaํ๊ฒฝ์ค์น+ํ์ธํ๋.pdf ์ฐธ์กฐ)
|
41 |
+
!apt install git-lfs
|
42 |
+
|
43 |
+
'''
|
44 |
+
|
45 |
+
from datasets import load_dataset
|
46 |
+
import datasets
|
47 |
+
from huggingface_hub import notebook_login
|
48 |
+
|
49 |
+
notebook_login() #Huggingface ๋ก๊ทธ์ธ
|
50 |
+
#ํ ํฐ ์์: hf_jRjLZcSBibYHwUaTjiNUEeoJlFxhFkGM
|
51 |
+
|
52 |
+
model_repository = "kisti/korscideberta" #Huggingface ๋ชจ๋ธ๋ช
์ค์
|
53 |
+
#model_repository = "./"
|
54 |
+
from transformers import AutoTokenizer
|
55 |
+
from tokenization_korscideberta_v2 import DebertaV2Tokenizer
|
56 |
+
tokenizer = DebertaV2Tokenizer.from_pretrained(model_repository)
|
57 |
+
out = tokenizer.tokenize("<cls> ํ๊ตญ์ด ๋ชจ๋ธ์ <s> ํ๊ตญ์ด ๋ชจ๋ธ์ ๊ณต์ ํฉ๋๋ค. <s>")
|
58 |
+
print(str(out))
|
59 |
+
|
60 |
+
#๋ฐ์ดํฐ์
๋ก๋
|
61 |
+
#data_files = {"train": "๋ฌธ์ฅ์๋ฏธ-๊ท ๋ฑ์ ๋/test.json", "test": "๋ฌธ์ฅ์๋ฏธ-๊ท ๋ฑ์ ๋/train.json", 'dev':'๋ฌธ์ฅ์๋ฏธ-๊ท ๋ฑ์ ๋/dev.json'}
|
62 |
+
#dataset = load_dataset('json', data_files=data_files)
|
63 |
+
dataset = load_dataset('csv', data_files='data/Abstract_Annotation_Data_tagsentence.csv', split='train')
|
64 |
+
dataset = dataset.shuffle(seed=42)
|
65 |
+
dataset = dataset.train_test_split(test_size=0.1)
|
66 |
+
print("dataset:", str(dataset))
|
67 |
+
|
68 |
+
#๋ฐ์ดํฐ์
์ ํ ํฌ๋์ด์ง ํ ์ ์ฅ
|
69 |
+
from datasets import ClassLabel
|
70 |
+
labels = [x for x in dataset['train']['tag']]
|
71 |
+
labels = list(set(labels))
|
72 |
+
labels.sort()
|
73 |
+
num_labels = len(labels)
|
74 |
+
print('Labels: '+str(labels)[:200])
|
75 |
+
ClassLabels = ClassLabel(num_classes=len(labels), names=labels)
|
76 |
+
|
77 |
+
def preprocess_function(example):
|
78 |
+
output_dict = tokenizer('<cls>'+example["sentence"]+'<s>', max_length=512, truncation=True)
|
79 |
+
output_dict['labels'] = ClassLabels.str2int(example['tag'])
|
80 |
+
return output_dict
|
81 |
+
#tokenized_datasets = dataset.map(preprocess_function, batched=False, remove_columns=dataset["train"].column_names)
|
82 |
+
tokenized_datasets = dataset.map(preprocess_function, batched=False)
|
83 |
+
tokenized_datasets = tokenized_datasets.cast_column("labels", ClassLabel(names=labels))
|
84 |
+
|
85 |
+
#๋ฐ์ดํฐ์
ํ ํฌ๋์ด์ง ํ์ธ
|
86 |
+
random_id = 1
|
87 |
+
print("Input IDS:", tokenized_datasets["train"][random_id]["input_ids"])
|
88 |
+
print("Labels:", tokenized_datasets["train"][random_id]["labels"])
|
89 |
+
tokenized_datasets.save_to_disk('data/tok')
|
90 |
+
|
91 |
+
#KorSciDeBERTa ๋ชจ๋ธ ๋ก๋ฉ
|
92 |
+
from transformers import AutoModelForSequenceClassification
|
93 |
+
|
94 |
+
num_labels = len(labels)
|
95 |
+
def model_init():
|
96 |
+
#return AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=7)
|
97 |
+
#return AutoModelForSequenceClassification.from_pretrained(model_repository, num_labels=num_labels, hidden_dropout_prob=0.3, attention_probs_dropout_prob=0.25)
|
98 |
+
return AutoModelForSequenceClassification.from_pretrained(model_repository, num_labels=num_labels, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1)
|
99 |
+
model = model_init()
|
100 |
+
|
101 |
+
#DataCollator ํ์ธ
|
102 |
+
from transformers import DataCollatorWithPadding
|
103 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
104 |
+
from collections import Counter
|
105 |
+
print("Test:", Counter(tokenized_datasets["test"]["labels"]))
|
106 |
+
|
107 |
+
#์ ํ๋ ์ฒ๋
|
108 |
+
from datasets import load_metric
|
109 |
+
accuracy = load_metric("accuracy")
|
110 |
+
|
111 |
+
import numpy as np
|
112 |
+
def compute_metrics(pred):
|
113 |
+
pred_logits = pred.predictions
|
114 |
+
pred_classes = np.argmax(pred_logits, axis=-1)
|
115 |
+
labels = np.asarray(pred.label_ids)
|
116 |
+
acc = accuracy.compute(predictions=pred_classes, references=labels)
|
117 |
+
return {"accuracy": acc["accuracy"]}
|
118 |
+
|
119 |
+
#training_args ์ค์
|
120 |
+
#๋ค์ ์๋ฌ ๋ฐ์์ output_dir์ ๋ณ๊ฒฝํ์ฌ ๋ค์ ์๋
|
121 |
+
#MlflowException: Changing param values is not allowed. Param with key=
|
122 |
+
|
123 |
+
import gc
|
124 |
+
gc.collect()
|
125 |
+
from transformers import TrainingArguments
|
126 |
+
training_args = TrainingArguments(
|
127 |
+
output_dir="deberta_sent4455",
|
128 |
+
num_train_epochs=4,
|
129 |
+
#learning_rate=5e-5,
|
130 |
+
learning_rate=1.5e-5,
|
131 |
+
per_device_train_batch_size=16,
|
132 |
+
per_device_eval_batch_size=8,
|
133 |
+
weight_decay=0.01,
|
134 |
+
fp16=True, # Use mixed precision
|
135 |
+
fp16_opt_level="01", # mixed precision mode
|
136 |
+
warmup_steps=500,
|
137 |
+
logging_steps=200,
|
138 |
+
save_steps=2000,
|
139 |
+
eval_steps=500,
|
140 |
+
push_to_hub=True,
|
141 |
+
evaluation_strategy="steps",
|
142 |
+
)
|
143 |
+
|
144 |
+
#Trainer ์ค์ ํ ํ์ต ์์
|
145 |
+
import gc
|
146 |
+
gc.collect()
|
147 |
+
|
148 |
+
from transformers import Trainer
|
149 |
+
trainer = Trainer(
|
150 |
+
args=training_args,
|
151 |
+
compute_metrics=compute_metrics,
|
152 |
+
model=model,
|
153 |
+
#tokenizer=tokenizer, #์๋ฌ ์ ๋ฐ: TypeError: save_vocabulary() got an unexpected keyword argument 'filename_prefix'
|
154 |
+
data_collator=data_collator,
|
155 |
+
train_dataset=tokenized_datasets["train"],
|
156 |
+
eval_dataset=tokenized_datasets["test"]
|
157 |
+
)
|
158 |
+
train_metrics = trainer.train().metrics
|
159 |
+
trainer.save_metrics("train", train_metrics)
|
160 |
+
trainer.push_to_hub()
|
161 |
+
#### ํ์ธํ๋ ๋ฐ ๋ชจ๋ธ ์
๋ก๋ ์๋ฃ
|
162 |
+
|
163 |
+
# Commented out IPython magic to ensure Python compatibility.
|
164 |
+
# %cd mecab
|
165 |
+
!bash <(curl -s https://raw.githubusercontent.com/konlpy/konlpy/master/scripts/mecab.sh); cd mecab-0.996-ko-0.9.2;
|
166 |
+
!chmod 775 ./configure; ./configure; make; chmod 775 tests/*.sh; make check; make install
|
167 |
+
|
168 |
+
# Commented out IPython magic to ensure Python compatibility.
|
169 |
+
!pwd
|
170 |
+
# %cd mecab
|
171 |
+
!cd mecab-ko-dic-2.1.1-20180720; chmod 775 ./autogen.sh; ./autogen.sh; ./configure; make
|
172 |
+
|
173 |
+
#!mecab -d /usr/local/lib/mecab/dic/mecab-ko-dic
|
174 |
+
|
175 |
+
# Commented out IPython magic to ensure Python compatibility.
|
176 |
+
!pwd
|
177 |
+
!ls
|
178 |
+
# %cd korscideberta
|
179 |
+
|
180 |
+
! unzip korscideberta.zip -d korscideberta; cd korscideberta
|
181 |
+
|
182 |
+
# Commented out IPython magic to ensure Python compatibility.
|
183 |
+
!pwd
|
184 |
+
# %cd korscideberta
|
185 |
+
|
186 |
+
! pip3 install -r requirements.txt; pip install --upgrade nltk;
|
187 |
+
!pip uninstall -y torch torchtext torch-tensorrt; pip install --upgrade pip; pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html --default-timeout=100; pip install setuptools_scm six mlflow; pip install "numpy<1.24.0"; pip install .
|