|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Tokenization classes for KoBERT model """ |
|
|
|
|
|
import logging |
|
import os |
|
import unicodedata |
|
from shutil import copyfile |
|
|
|
from transformers import PreTrainedTokenizer |
|
|
|
|
|
from konlpy.tag import Mecab |
|
from unicode import join_jamos |
|
from normalize import MosesPunctNormalizer |
|
nor = MosesPunctNormalizer() |
|
|
|
|
|
BASE_CODE, CHOSUNG, JUNGSUNG = 44032, 588, 28 |
|
|
|
CHOSUNG_LIST = ['γ±', 'γ²', 'γ΄', 'γ·', 'γΈ', 'γΉ', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
'] |
|
|
|
JUNGSUNG_LIST = ['γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
‘', 'γ
’', 'γ
£'] |
|
|
|
JONGSUNG_LIST = [' ', 'γ±', 'γ²', 'γ³', 'γ΄', 'γ΅', 'γΆ', 'γ·', 'γΉ', 'γΊ', 'γ»', 'γΌ', 'γ½', 'γΎ', 'γΏ', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
', 'γ
'] |
|
def splitjamo(string): |
|
sp_list = list(string) |
|
result = [] |
|
for keyword in sp_list: |
|
|
|
if re.match('.*[γ±-γ
γ
-γ
£κ°-ν£]+.*', keyword) is not None: |
|
|
|
char_code = ord(keyword) - BASE_CODE |
|
char1 = int(char_code / CHOSUNG) |
|
try: |
|
result.append(CHOSUNG_LIST[char1]) |
|
except: |
|
return string |
|
|
|
|
|
char2 = int((char_code - (CHOSUNG * char1)) / JUNGSUNG) |
|
result.append(JUNGSUNG_LIST[char2]) |
|
|
|
char3 = int((char_code - (CHOSUNG * char1) - (JUNGSUNG * char2))) |
|
result.append(JONGSUNG_LIST[char3]) |
|
else: |
|
result.append(keyword) |
|
return result |
|
def has_coda(word): |
|
return (ord(word[-1]) -44032)%28==0 |
|
def _replace_unicode(line): |
|
if(line==None): |
|
return "" |
|
line = line.replace("β",'-').replace("β","-").replace("β","-").replace("οΌ",'"').replace("οΌ","'").replace("βΉ","<").replace("βΊ",">").replace("β","'").replace("β","'").replace("β",'"').replace("β",'"').replace("Β«",'<').replace("Β»",'>').replace("Λ",'"').replace("οΌ",'(').replace("οΌ",')').replace("γ",'"').replace("γ",'"').replace("β",'"').replace("β",'"').replace("β","'").replace("β","'").replace("γ","<").replace("γ",">").replace("γ","<").replace("γ",">").replace("γ","'").replace("γ","'").replace("γ","[").replace("γ","]").replace("γ","[").replace("γ","]").replace("οΌ»","[").replace("οΌ½","]").replace("ο½","{").replace("ο½","}") |
|
line=nor.replace_unicode_punct(line) |
|
return line |
|
def _mecab(line): |
|
mecab = Mecab() |
|
|
|
|
|
pdoc = [] |
|
morphs = [] |
|
|
|
poss = mecab.pos(line) |
|
for pos in poss: |
|
morphs.append(pos[0]) |
|
''' |
|
pdoc.append(" ".join(morphs)) |
|
return pdoc |
|
''' |
|
return " ".join(morphs) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
VOCAB_FILES_NAMES = { |
|
"vocab_file": "spm.model", |
|
"vocab_txt": "vocab.txt", |
|
} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"monologg/kobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert/tokenizer_78b3253a26.model", |
|
"monologg/kobert-lm": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert-lm/tokenizer_78b3253a26.model", |
|
"monologg/distilkobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/distilkobert/tokenizer_78b3253a26.model", |
|
}, |
|
"vocab_txt": { |
|
"monologg/kobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert/vocab.txt", |
|
"monologg/kobert-lm": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert-lm/vocab.txt", |
|
"monologg/distilkobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/distilkobert/vocab.txt", |
|
}, |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"monologg/kobert": 512, |
|
"monologg/kobert-lm": 512, |
|
"monologg/distilkobert": 512, |
|
} |
|
|
|
PRETRAINED_INIT_CONFIGURATION = { |
|
"monologg/kobert": {"do_lower_case": False}, |
|
"monologg/kobert-lm": {"do_lower_case": False}, |
|
"monologg/distilkobert": {"do_lower_case": False}, |
|
} |
|
|
|
SPIECE_UNDERLINE = "β" |
|
|
|
|
|
class DebertaV2Tokenizer(PreTrainedTokenizer): |
|
""" |
|
SentencePiece based tokenizer. Peculiarities: |
|
- requires `SentencePiece <https://github.com/google/sentencepiece>`_ |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
vocab_txt, |
|
do_lower_case=False, |
|
remove_space=True, |
|
keep_accents=False, |
|
unk_token="<unk>", |
|
sep_token="<s>", |
|
pad_token="<pad>", |
|
cls_token="<cls>", |
|
mask_token="<mask>", |
|
**kwargs, |
|
): |
|
super().__init__( |
|
unk_token="<unk>", |
|
sep_token=sep_token, |
|
pad_token=pad_token, |
|
cls_token=cls_token, |
|
mask_token=mask_token, |
|
**kwargs, |
|
) |
|
|
|
|
|
self.token2idx = dict() |
|
self.idx2token = [] |
|
with open(vocab_txt, "r", encoding="utf-8") as f: |
|
for idx, token in enumerate(f): |
|
token = token.strip() |
|
self.token2idx[token] = idx |
|
self.idx2token.append(token) |
|
|
|
try: |
|
import sentencepiece as spm |
|
except ImportError: |
|
logger.warning( |
|
"You need to install SentencePiece to use KoBertTokenizer: https://github.com/google/sentencepiece" |
|
"pip install sentencepiece" |
|
) |
|
|
|
self.do_lower_case = do_lower_case |
|
self.remove_space = remove_space |
|
self.keep_accents = keep_accents |
|
self.vocab_file = vocab_file |
|
self.vocab_txt = vocab_txt |
|
|
|
self.sp_model = spm.SentencePieceProcessor() |
|
self.sp_model.Load(vocab_file) |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.idx2token) |
|
|
|
def get_vocab(self): |
|
return dict(self.token2idx, **self.added_tokens_encoder) |
|
|
|
def __getstate__(self): |
|
state = self.__dict__.copy() |
|
state["sp_model"] = None |
|
return state |
|
|
|
def __setstate__(self, d): |
|
self.__dict__ = d |
|
try: |
|
import sentencepiece as spm |
|
except ImportError: |
|
logger.warning( |
|
"You need to install SentencePiece to use KoBertTokenizer: https://github.com/google/sentencepiece" |
|
"pip install sentencepiece" |
|
) |
|
self.sp_model = spm.SentencePieceProcessor() |
|
self.sp_model.Load(self.vocab_file) |
|
|
|
def preprocess_text(self, inputs): |
|
if self.remove_space: |
|
outputs = " ".join(inputs.strip().split()) |
|
else: |
|
outputs = inputs |
|
outputs = outputs.replace("``", '"').replace("''", '"') |
|
|
|
if not self.keep_accents: |
|
outputs = unicodedata.normalize("NFKD", outputs) |
|
outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) |
|
if self.do_lower_case: |
|
outputs = outputs.lower() |
|
|
|
return outputs |
|
|
|
def _tokenize(self, text): |
|
"""Tokenize a string.""" |
|
text = self.preprocess_text(text) |
|
|
|
|
|
text = _replace_unicode(text) |
|
text = _mecab(text) |
|
|
|
|
|
pieces = self.sp_model.encode(text, out_type=str) |
|
new_pieces = [] |
|
for piece in pieces: |
|
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): |
|
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) |
|
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: |
|
if len(cur_pieces[0]) == 1: |
|
cur_pieces = cur_pieces[1:] |
|
else: |
|
cur_pieces[0] = cur_pieces[0][1:] |
|
cur_pieces.append(piece[-1]) |
|
new_pieces.extend(cur_pieces) |
|
else: |
|
new_pieces.append(piece) |
|
''' |
|
return_pieces = [] |
|
for n in new_pieces: |
|
if(isinstance(n,list)): |
|
for nn in n: |
|
return_pieces.append(nn) |
|
else: |
|
return_pieces.append(n) |
|
return return_pieces |
|
''' |
|
return new_pieces |
|
|
|
|
|
def _convert_token_to_id(self, token): |
|
""" Converts a token (str/unicode) in an id using the vocab. """ |
|
return self.token2idx.get(token, self.token2idx[self.unk_token]) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (string/unicode) using the vocab.""" |
|
return self.idx2token[index] |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (strings for sub-words) in a single string.""" |
|
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() |
|
return out_string |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks |
|
by concatenating and adding special tokens. |
|
A KoBERT sequence has the following format: |
|
single sequence: [CLS] X [SEP] |
|
pair of sequences: [CLS] A [SEP] B [SEP] |
|
""" |
|
if token_ids_1 is None: |
|
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
sep = [self.sep_token_id] |
|
return cls + token_ids_0 + sep + token_ids_1 + sep |
|
|
|
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): |
|
""" |
|
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods. |
|
Args: |
|
token_ids_0: list of ids (must not contain special tokens) |
|
token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids |
|
for sequence pairs |
|
already_has_special_tokens: (default False) Set to True if the token list is already formated with |
|
special tokens for the model |
|
Returns: |
|
A list of integers in the range [0, 1]: 0 for a special token, 1 for a sequence token. |
|
""" |
|
|
|
if already_has_special_tokens: |
|
if token_ids_1 is not None: |
|
raise ValueError( |
|
"You should not supply a second sequence if the provided sequence of " |
|
"ids is already formated with special tokens for the model." |
|
) |
|
return list( |
|
map( |
|
lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, |
|
token_ids_0, |
|
) |
|
) |
|
|
|
if token_ids_1 is not None: |
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] |
|
return [1] + ([0] * len(token_ids_0)) + [1] |
|
|
|
def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): |
|
""" |
|
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. |
|
A KoBERT sequence pair mask has the following format: |
|
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 |
|
| first sequence | second sequence |
|
if token_ids_1 is None, only returns the first portion of the mask (0's). |
|
""" |
|
sep = [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
if token_ids_1 is None: |
|
return len(cls + token_ids_0 + sep) * [0] |
|
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] |
|
|
|
def save_vocabulary(self, save_directory): |
|
"""Save the sentencepiece vocabulary (copy original file) and special tokens file |
|
to a directory. |
|
""" |
|
if not os.path.isdir(save_directory): |
|
logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) |
|
return |
|
|
|
|
|
out_vocab_model = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_file"]) |
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_model): |
|
copyfile(self.vocab_file, out_vocab_model) |
|
|
|
|
|
index = 0 |
|
out_vocab_txt = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_txt"]) |
|
with open(out_vocab_txt, "w", encoding="utf-8") as writer: |
|
for token, token_index in sorted(self.token2idx.items(), key=lambda kv: kv[1]): |
|
if index != token_index: |
|
logger.warning( |
|
"Saving vocabulary to {}: vocabulary indices are not consecutive." |
|
" Please check that the vocabulary is not corrupted!".format(out_vocab_txt) |
|
) |
|
index = token_index |
|
writer.write(token + "\n") |
|
index += 1 |
|
|
|
return out_vocab_model, out_vocab_txt |
|
|