kishanj97 commited on
Commit
8cd55fc
1 Parent(s): df12490

update code

Browse files
Files changed (1) hide show
  1. code.py +47 -0
code.py CHANGED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import nltk
2
+ from nltk.sentiment import SentimentIntensityAnalyzer
3
+
4
+ # Download NLTK resources (only need to run once)
5
+ nltk.download('vader_lexicon')
6
+ # Sample text for sentiment analysis
7
+ with open("lks.txt", 'r') as file:
8
+ fl = file.read()
9
+
10
+ contactId = fl.split("|")[0]
11
+ transcript=fl.split("|")[1]
12
+ transcript=transcript.replace("'",'')
13
+ # Initialize the sentiment analyzer
14
+ sia = SentimentIntensityAnalyzer()
15
+ print(transcript)
16
+ # Analyze sentiment
17
+ sentiment_score = sia.polarity_scores(transcript)
18
+ # Initialize dictionary to store tone counts
19
+ tones = {
20
+ 'analytical': 0,
21
+ 'anger': 0,
22
+ 'confident': 0,
23
+ 'fear': 0,
24
+ 'joy': 0,
25
+ 'sadness': 0,
26
+ 'tentative': 0
27
+ }
28
+ # Apply thresholds and count tones
29
+ if sentiment_score['compound'] >= 0.05: # Threshold for positive sentiment
30
+ tones['joy'] += 1
31
+ elif sentiment_score['compound'] <= -0.05: # Threshold for negative sentiment
32
+ tones['anger'] += 1
33
+ elif sentiment_score['neg'] >= 0.5: # Threshold for high negativity
34
+ tones['sadness'] += 1
35
+ elif sentiment_score['pos'] <= 0.2: # Threshold for low positivity
36
+ tones['fear'] += 1
37
+ elif sentiment_score['neu'] >= 0.5: # Threshold for high neutrality
38
+ tones['tentative'] += 1
39
+ else: # Otherwise, consider it analytical or confident
40
+ tones['analytical'] += 1
41
+ tones['confident'] += 1
42
+ # Print tone counts
43
+ print("Tone Counts:", tones)
44
+
45
+
46
+ # sample output
47
+ #Tone Counts: {'analytical': 0, 'anger': 0, 'confident': 0, 'fear': 0, 'joy': 1, 'sadness': 0, 'tentative': 0}