TopicModelingRepo / BERTopic /my_topic_modeling.py
kisejin's picture
Update BERTopic/my_topic_modeling.py
b0f7b59 verified
import os # Miscellaneous operating system interfaces
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from os.path import join # path joining
from pathlib import Path # path joining
import pandas as pd
import numpy as np
import sklearn as sk
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import seaborn as sns
import regex as re
from scipy.cluster import hierarchy as sch
import datetime
import time
import timeit
import json
import pickle
import copy
import random
from itertools import chain
import logging
import sys
import argparse
import nltk
nltk.download('wordnet')
nltk.download('punkt')
import textblob
from textblob import TextBlob
from textblob.wordnet import Synset
from textblob import Word
from textblob.wordnet import VERB
from bertopic import BERTopic
from bertopic.vectorizers import ClassTfidfTransformer
from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer
from sentence_transformers import SentenceTransformer
# from cuml.manifold import UMAP
# from umap import UMAP
# from hdbscan import HDBSCAN
from cuml.cluster import HDBSCAN
from cuml.manifold import UMAP
import gensim.corpora as corpora
from gensim.models.coherencemodel import CoherenceModel
import torch
from GPUtil import showUtilization as gpu_usage
from numba import cuda
import pretty_errors
import datetime
pretty_errors.configure(
display_timestamp=1,
timestamp_function=lambda: datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
)
# Get working directory
working_dir = os.path.abspath(os.path.join("/workspace", "TopicModelingRepo"))
data_dir = os.path.join(working_dir, 'data')
lib_dir = os.path.join(working_dir, 'libs')
outer_output_dir = os.path.join(working_dir, 'outputs')
output_dir_name = time.strftime('%Y_%m_%d')
# output_dir_name = time.strftime(args.datetime)
output_dir = os.path.join(outer_output_dir, output_dir_name)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
stopwords_path = os.path.join(data_dir, 'vietnamese_stopwords_dash.txt')
# Setting variables
doc_time = '2024_Jan_15'
doc_type = 'reviews'
doc_level = 'sentence'
target_col = 'normalized_content'
def free_gpu_cache():
print("Initial GPU Usage")
gpu_usage()
torch.cuda.empty_cache()
cuda.select_device(0)
cuda.close()
cuda.select_device(0)
print("GPU Usage after emptying the cache")
gpu_usage()
def create_logger_file_and_console(path_file):
# create logger for "Sample App"
logger = logging.getLogger('automated_testing')
logger.setLevel(logging.DEBUG)
# create file handler which logs even debug messages
fileh = logging.FileHandler(path_file, mode='a')
fileh.setLevel(logging.DEBUG)
# create console handler with a higher log level
consoleh = logging.StreamHandler(stream=sys.stdout)
consoleh.setLevel(logging.INFO)
# create formatter and add it to the handlers
formatter = logging.Formatter('[%(asctime)s] %(levelname)8s --- %(message)s ',datefmt='%H:%M:%S')
fileh.setFormatter(formatter)
consoleh.setFormatter(formatter)
# add the handlers to the logger
# logger.addHandler(consoleh)
logger.addHandler(fileh)
return logger
def create_logger_file(path_file):
# create logger for "Sample App"
logger = logging.getLogger('automated_testing')
logger.setLevel(logging.INFO)
# create file handler which logs even debug messages
fileh = logging.FileHandler(path_file, mode='a')
fileh.setLevel(logging.INFO)
# create formatter and add it to the handlers
formatter = logging.Formatter('[%(asctime)s] %(levelname)8s --- %(message)s ',datefmt='%H:%M:%S')
fileh.setFormatter(formatter)
# add the handlers to the logger
logger.addHandler(fileh)
return logger
def create_logger_console():
# create logger for "Sample App"
logger = logging.getLogger('automated_testing')
logger.setLevel(logging.INFO)
# create console handler with a higher log level
consoleh = logging.StreamHandler(stream=sys.stdout)
consoleh.setLevel(logging.INFO)
# create formatter and add it to the handlers
formatter = logging.Formatter('[%(asctime)s] %(levelname)8s --- %(message)s ',datefmt='%H:%M:%S')
consoleh.setFormatter(formatter)
# add the handlers to the logger
logger.addHandler(consoleh)
return logger
def init_args():
parser = argparse.ArgumentParser()
# basic settings
parser.add_argument(
"--n_topics",
type=int,
default=10,
required=True,
help="Number of topics for topic modeling.",
)
parser.add_argument(
"--name_dataset",
default="booking",
type=str,
help="The name of the dataset, selected from: [booking, tripadvisor]",
)
parser.add_argument(
"--train_both",
default="yes",
type=str,
required=True,
help="Train both booking and tripadvisor or only one.",
)
parser.add_argument(
"--only_coherence_score",
default="yes",
type=str,
required=True,
help="Only train both models for calculating coherence score.",
)
parser.add_argument(
"--need_reduce_n_topics",
default="yes",
type=str,
required=True,
help="Need reduce n topics and show topic modeling over timestamp with this.",
)
args = parser.parse_args()
return args
def check_valid(list_topics):
count = 0
for topic in list_topics:
if topic[0] != '':
count += 1
return True if count > 2 else False
def prepare_data(doc_source, doc_type, type_framework = 'pandas'):
name_file = doc_source.split('.')[0]
out_dir = os.path.join(output_dir, name_file)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
date_col = 'Date'
df_reviews_path = os.path.join(data_dir, doc_source)
if type_framework == 'pandas':
df_reviews = pd.read_csv(df_reviews_path, lineterminator='\n', encoding='utf-8') # Pandas
df_reviews = df_reviews.loc[df_reviews['year']>0] # Pandas
df_reviews = df_reviews.loc[df_reviews['language'] == 'English'] # Pandas
if doc_type == 'reviews':
df_doc = df_reviews
df_doc['dates'] = pd.to_datetime(df_doc[date_col],dayfirst=False,errors='coerce'). \
dt.to_period('M'). \
dt.strftime('%Y-%m-%d') # pandas
# timestamps = df_doc['dates'].to_list()
# df_doc = df_doc.loc[(df_doc['dates']>='2020-04-01') & (df_doc['dates']<'2022-01-01')]
df_doc['dates_yearly'] = pd.to_datetime(df_doc[date_col],dayfirst=False,errors='coerce'). \
dt.to_period('Y'). \
dt.strftime('%Y') # pandas
df_doc['dates_quarterly'] = pd.to_datetime(df_doc[date_col],dayfirst=False,errors='coerce'). \
dt.to_period('d'). \
dt.strftime('%YQ%q') # pandas
df_doc['dates_monthly'] = pd.to_datetime(df_doc[date_col],dayfirst=False,errors='coerce'). \
dt.to_period('M'). \
dt.strftime('%Y-%m')
elif type_framework == 'polars':
df_reviews = pl.read_csv(df_reviews_path, separator='\n') # Polars
df_reviews = df_reviews.filter(pl.col("year")>0) # Polars
df_reviews = df_reviews.filter(pl.col('language') == 'English') # Polars
if doc_type == 'reviews':
df_doc = df_reviews
df_doc = df_doc.with_column(pl.col(date_col).str_to_datetime(dayfirst=False, errors='coerce'). \
to_period('M'). \
strftime('%Y-%m-%d').alias('dates')) # polars
df_doc = df_doc.with_column(pl.col(date_col).str_to_datetime(dayfirst=False, errors='coerce'). \
to_period('Y'). \
strftime('%Y').alias('dates_yearly')) # polars
df_doc = df_doc.with_column(pl.col(date_col).str_to_datetime(dayfirst=False, errors='coerce'). \
to_period('d'). \
strftime('%YQ%q').alias('dates_quarterly')) # polars
df_doc = df_doc.with_column(pl.col(date_col).str_to_datetime(dayfirst=False, errors='coerce'). \
to_period('M'). \
strftime('%Y-%m').alias('dates_monthly')) # polars
timestamps_dict = dict()
timestamps_dict['yearly'] = df_doc['dates_yearly'].to_list()
timestamps_dict['quarterly'] = df_doc['dates_quarterly'].to_list()
timestamps_dict['monthly'] = df_doc['dates_monthly'].to_list()
timestamps_dict['date'] = df_doc['dates'].to_list()
target_col = 'normalized_content'
df_documents = df_doc[target_col]
return (timestamps_dict, df_doc, df_documents, df_reviews)
def flatten_comprehension(matrix):
return [item for row in matrix for item in row]
def processing_data(df_doc, df_documents, timestamps_dict, doc_level, target_col):
if doc_level == 'sentence':
# num_sent = [len(TextBlob(row).sentences) for row in df_doc[target_col]]
# df_documents = pd.Series(flatten_comprehension([[str(sentence) for sentence in TextBlob(row).sentences] for row in df_documents]))
# Split sentence which "."
ll_sent = [[str(sent) for sent in nltk.sent_tokenize(row,language='english')] for row in df_doc[target_col]]
# Count number sentence for each comment
num_sent = [len(x) for x in ll_sent]
# Flat m' sentence in N comment to m'*N comment
df_documents = pd.Series(flatten_comprehension([x for x in ll_sent]))
# timestamps = list(chain.from_iterable(n*[item] for item, n in zip(timestamps, num_sent)))
# Copy timestamp features to number sentence times for each comment and flatten them adopt with new m'*N comment
for key in timestamps_dict.keys():
timestamps_dict[key] = list(chain.from_iterable(n*[item] for item, n in zip(timestamps_dict[key], num_sent)))
# time_slice = df_doc['year'].value_counts().sort_index().tolist()
# time_slice = np.diff([np.cumsum(num_sent)[n-1] for n in np.cumsum(time_slice)],prepend=0).tolist()
# elif doc_level == 'whole':
# df_documents
# Copy id features to number sentence times for each comment and flatten them adopt with new m'*N comment
sent_id_ll = [[j]*num_sent[i] for i,j in enumerate(df_doc.index)]
sent_id = flatten_comprehension(sent_id_ll)
# Define a new data frame with new m'*N comment
df_doc_out = pd.DataFrame({
'sentence':df_documents, 'review_id':sent_id,
'date':timestamps_dict['date'],
'monthly':timestamps_dict['monthly'],
'quarterly':timestamps_dict['quarterly'],
'yearly':timestamps_dict['yearly']})
return df_documents, timestamps_dict, sent_id, df_doc_out
def create_model_bertopic_booking(n_topics: int = 10):
sentence_model = SentenceTransformer("thenlper/gte-small")
# Get 50 neighbor datapoints and 10 dimensional with metric distance: euclidean
umap_model = UMAP(n_neighbors=50, n_components=10,
min_dist=0.0, metric='euclidean',
low_memory=True,
random_state=1)
cluster_model = HDBSCAN(min_cluster_size=50, metric='euclidean',
cluster_selection_method='leaf',
# cluster_selection_method='eom',
prediction_data=True,
leaf_size=20,
min_samples=10)
# cluster_model = AgglomerativeClustering(n_clusters=11)
vectorizer_model = CountVectorizer(min_df=1,ngram_range=(1, 1),stop_words="english")
ctfidf_model = ClassTfidfTransformer()
# representation_model = KeyBERTInspired()
# Diversity param is lambda in equation of Maximal Marginal Relevance
representation_model = MaximalMarginalRelevance(diversity=0.7,top_n_words=10)
# Create model
topic_model = BERTopic(embedding_model=sentence_model,
umap_model=umap_model,
hdbscan_model=cluster_model,
vectorizer_model=vectorizer_model,
ctfidf_model=ctfidf_model,
representation_model=representation_model,
# zeroshot_topic_list=zeroshot_topic_list,
# zeroshot_min_similarity=0.7,
nr_topics = n_topics,
top_n_words = 10,
low_memory=True,
verbose=True)
return topic_model
def create_model_bertopic_tripadvisor(n_topics: int = 10):
sentence_model = SentenceTransformer("thenlper/gte-small")
# Get 50 neighbor datapoints and 10 dimensional with metric distance: euclidean
umap_model = UMAP(n_neighbors=200, n_components=10,
min_dist=0.0, metric='euclidean',
low_memory=True,
random_state=1)
cluster_model = HDBSCAN(min_cluster_size=500, metric='euclidean',
cluster_selection_method='leaf',
prediction_data=True,
leaf_size=100,
min_samples=10)
# cluster_model = AgglomerativeClustering(n_clusters=11)
vectorizer_model = CountVectorizer(min_df=10,ngram_range=(1, 1),stop_words="english")
ctfidf_model = ClassTfidfTransformer()
# representation_model = KeyBERTInspired()
# Diversity param is lambda in equation of Maximal Marginal Relevance
representation_model = MaximalMarginalRelevance(diversity=0.7,top_n_words=10)
# Create model
topic_model = BERTopic(embedding_model=sentence_model,
umap_model=umap_model,
hdbscan_model=cluster_model,
vectorizer_model=vectorizer_model,
ctfidf_model=ctfidf_model,
representation_model=representation_model,
# zeroshot_topic_list=zeroshot_topic_list,
# zeroshot_min_similarity=0.7,
nr_topics = n_topics,
top_n_words = 10,
low_memory=True,
verbose=True)
return topic_model
def coherence_score(topic_model, df_documents):
cleaned_docs = topic_model._preprocess_text(df_documents)
vectorizer = topic_model.vectorizer_model
analyzer = vectorizer.build_analyzer()
tokens = [analyzer(doc) for doc in cleaned_docs]
dictionary = corpora.Dictionary(tokens)
corpus = [dictionary.doc2bow(token) for token in tokens]
topics = topic_model.get_topics()
topic_words = [
[word for word, _ in topic_model.get_topic(topic) if word != ""] for topic in topics if check_valid(topic_model.get_topic(topic))
]
coherence_model = CoherenceModel(topics=topic_words,
texts=tokens,
corpus=corpus,
dictionary=dictionary,
coherence='c_npmi')
coherence = coherence_model.get_coherence()
return coherence
def working(args: argparse.Namespace, name_dataset: str):
source = f'en_{name_dataset}'
output_subdir_name = source + f'/bertopic2_non_zeroshot_{args.n_topics}topic_'+doc_type+'_'+doc_level+'_'+doc_time
output_subdir = os.path.join(output_dir, output_subdir_name)
if not os.path.exists(output_subdir):
os.makedirs(output_subdir)
info_log_out = os.path.join(output_subdir, 'info.log')
############# Create logger##################################
fandc_logger = create_logger_file_and_console(info_log_out)
file_logger = create_logger_file(info_log_out)
console_logger = create_logger_console()
##############################################################
######### Create dataframe for dataset booking and tripadvisor #####
fandc_logger.log(logging.INFO, f'STARTING WITH TOPIC MODEL FOR {name_dataset} dataset')
fandc_logger.log(logging.INFO, f'Get data from {name_dataset}')
doc_source = f'en_{name_dataset}.csv'
list_tmp = prepare_data(doc_source, doc_type, type_framework = 'pandas')
(timestamps_dict, df_doc,
df_documents, df_reviews) = list_tmp
fandc_logger.log(logging.INFO, f'Get data from {name_dataset} successfully!')
####################################################################
######### Processing data for booking and tripadvisor dataset #########
fandc_logger.log(logging.INFO, f'Processing data for {name_dataset} dataset')
(df_documents, timestamps_dict,
sent_id, df_doc_out) = processing_data(df_doc, df_documents, timestamps_dict, doc_level, target_col)
fandc_logger.log(logging.INFO, f'Processing data for {name_dataset} dataset successfully!')
#######################################################################
# Create model
fandc_logger.log(logging.INFO, f'Create model for {name_dataset} dataset')
topic_model = create_model_bertopic_booking(args.n_topics)
# Fitting model
fandc_logger.log(logging.INFO, f'Training model for {name_dataset} dataset')
fandc_logger.log(logging.INFO, f'Fitting model processing...')
t_start = time.time()
t = time.process_time()
topic_model = topic_model.fit(df_documents)
elapsed_time = time.process_time() - t
t_end = time.time()
fandc_logger.log(logging.INFO, f'Time working for fitting process: {t_end - t_start}\t --- \t Time model processing:{elapsed_time}')
console_logger.log(logging.INFO, 'End of fitting process')
topics_save_dir = os.path.join(output_subdir, 'topics_bertopic_'+doc_type+'_'+doc_level+'_'+doc_time)
topic_model.save(topics_save_dir, serialization="safetensors", save_ctfidf=True, save_embedding_model=True)
fandc_logger.log(logging.INFO, f'Save fitting model for {name_dataset} dataset successfully!')
# Transform model
t_start = time.time()
t = time.process_time()
topics, probs = topic_model.transform(df_documents)
elapsed_time = time.process_time() - t
t_end = time.time()
fandc_logger.log(logging.INFO, f'Time working for transform process: {t_end - t_start}\t --- \t Time model processing:{elapsed_time}')
console_logger.log(logging.INFO, 'End of transform process')
topics_save_dir = os.path.join(output_subdir, 'topics_bertopic_transform_'+doc_type+'_'+doc_level+'_'+doc_time)
topic_model.save(topics_save_dir, serialization="safetensors", save_ctfidf=True, save_embedding_model=True)
fandc_logger.log(logging.INFO, f'Save transform model for {name_dataset} dataset successfully!')
############# Result ###############
# ***** 1
# Get coherence score
fandc_logger.log(logging.INFO, f'Staring calculate coherence score for {name_dataset} dataset')
coherence = coherence_score(topic_model, df_documents)
fandc_logger.log(logging.INFO, f'Coherence score for {name_dataset} dataset: {coherence} with {args.n_topics} topics')
if args.only_coherence_score == 'no':
# Get topics
fandc_logger.log(logging.INFO, f'Get topics for {name_dataset} dataset')
topic_info = topic_model.get_topic_info()
topic_info_path_out = os.path.join(output_subdir, 'topic_info_'+doc_type+'_'+doc_level+'_'+doc_time+'.csv')
topic_info.to_csv(topic_info_path_out, encoding='utf-8')
fandc_logger.log(logging.INFO, f'Save topic_info for {name_dataset} dataset successfully!')
# Get weights for each topic
fandc_logger.log(logging.INFO, f'Get weights for each topic')
topic_keyword_weights = topic_model.get_topics(full=True)
topic_keyword_weights_path_out = os.path.join(output_subdir, 'topic_keyword_weights_'+doc_type+'_'+doc_level+'_'+doc_time+'.json')
with open(topic_keyword_weights_path_out, 'w', encoding="utf-8") as f:
f.write(json.dumps(str(topic_keyword_weights),indent=4, ensure_ascii=False))
fandc_logger.log(logging.INFO, f'Save weights for each topic successfully!')
# Put data into dataframe
df_topics = topic_model.get_document_info(df_documents)
df_doc_out = pd.concat([df_topics, df_doc_out.loc[:,"review_id":]],axis=1)
df_doc_out_path = os.path.join(output_subdir, 'df_documents_'+doc_type+'_'+doc_level+'_'+doc_time+'.csv')
df_doc_out.to_csv(df_doc_out_path, encoding='utf-8')
fandc_logger.log(logging.INFO, f'Save df_doc_out for {name_dataset} dataset successfully!')
df_doc_path = os.path.join(output_subdir, f'df_docs_{name_dataset}'+doc_type+'_'+doc_level+'_'+doc_time+'.csv')
df_doc.to_csv(df_doc_path, encoding='utf-8')
fandc_logger.log(logging.INFO, f'Save df_doc_{name_dataset} for {name_dataset} dataset successfully!')
# Get params
model_params = topic_model.get_params()
model_params_path_txt_out = os.path.join(output_subdir, f'model_params_{name_dataset}'+doc_type+'_'+doc_level+'_'+doc_time+'.txt')
with open(model_params_path_txt_out, 'w', encoding="utf-8") as f:
f.write(json.dumps(str(model_params),indent=4, ensure_ascii=False))
fandc_logger.log(logging.INFO, f'Save params of model for {name_dataset} dataset successfully!')
# Get topics visualize
fig = topic_model.visualize_topics()
vis_save_dir = os.path.join(output_subdir, f'bertopic_vis_{name_dataset}'+doc_type+'_'+doc_level+'_'+doc_time+'.html')
fig.write_html(vis_save_dir)
fandc_logger.log(logging.INFO, f'Save visualize of topic for {name_dataset} dataset successfully!')
# # Hierarchical topics
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
fandc_logger.log(logging.INFO, f'Staring hierarchical topics...')
linkage_function = lambda x: sch.linkage(x, 'average', optimal_ordering=True)
hierarchical_topics = topic_model.hierarchical_topics(df_documents, linkage_function=linkage_function)
hierarchical_topics_path_out = os.path.join(output_subdir, f'hierarchical_topics_path_out_{name_dataset}'+doc_type+'_'+doc_level+'_'+doc_time+'.csv')
hierarchical_topics.to_csv(hierarchical_topics_path_out, encoding='utf-8')
fandc_logger.log(logging.INFO, f'Save hierarchical topics table for {name_dataset} dataset successfully!')
fig = topic_model.visualize_hierarchy(hierarchical_topics=hierarchical_topics)
vis_save_dir = os.path.join(output_subdir, f'bertopic_hierarchy_vis_{name_dataset}'+doc_type+'_'+doc_level+'_'+doc_time+'.html')
fig.write_html(vis_save_dir)
fandc_logger.log(logging.INFO, f'Save visualize of hierarchical topics for {name_dataset} dataset successfully!')
# Get dynamic topic modeling
fandc_logger.log(logging.INFO, f'Staring dynamic topic modeling over timestamp...')
for key in timestamps_dict.keys():
topics_over_time = topic_model.topics_over_time(df_documents, timestamps_dict[key])
fig = topic_model.visualize_topics_over_time(topics_over_time, top_n_topics=10, title=f"Topics over time following {key}")
fig.show()
vis_save_dir = os.path.join(output_subdir, f'bertopic_dtm_vis_{name_dataset}'+key+'_'+doc_type+'_'+doc_level+'_'+doc_time+'.html')
fig.write_html(vis_save_dir)
topic_dtm_path_out = os.path.join(output_subdir, f'topics_dtm_{name_dataset}'+key+'_'+doc_type+'_'+doc_level+'_'+doc_time+'.csv')
topics_over_time.to_csv(topic_dtm_path_out, encoding='utf-8')
fandc_logger.log(logging.INFO, f'Save topics over time for {name_dataset} dataset successfully!')
###################################
fandc_logger.log(logging.INFO, f'ENDING TRAINING TOPIC MODELING {name_dataset} dataset\n')
if __name__ == "__main__":
args = init_args()
if args.train_both == 'yes':
working(args, 'booking')
working(args, 'tripadvisor')
else:
working(args, args.name_dataset)
free_gpu_cache()