kisejin's picture
Upload 261 files
19b102a verified
import numpy as np
import pandas as pd
from typing import Callable, List, Union
from scipy.sparse import csr_matrix
from scipy.cluster import hierarchy as sch
from scipy.spatial.distance import squareform
from sklearn.metrics.pairwise import cosine_similarity
import plotly.graph_objects as go
import plotly.figure_factory as ff
from bertopic._utils import validate_distance_matrix
def visualize_hierarchy(topic_model,
orientation: str = "left",
topics: List[int] = None,
top_n_topics: int = None,
custom_labels: Union[bool, str] = False,
title: str = "<b>Hierarchical Clustering</b>",
width: int = 1000,
height: int = 600,
hierarchical_topics: pd.DataFrame = None,
linkage_function: Callable[[csr_matrix], np.ndarray] = None,
distance_function: Callable[[csr_matrix], csr_matrix] = None,
color_threshold: int = 1) -> go.Figure:
""" Visualize a hierarchical structure of the topics
A ward linkage function is used to perform the
hierarchical clustering based on the cosine distance
matrix between topic embeddings.
Arguments:
topic_model: A fitted BERTopic instance.
orientation: The orientation of the figure.
Either 'left' or 'bottom'
topics: A selection of topics to visualize
top_n_topics: Only select the top n most frequent topics
custom_labels: If bool, whether to use custom topic labels that were defined using
`topic_model.set_topic_labels`.
If `str`, it uses labels from other aspects, e.g., "Aspect1".
NOTE: Custom labels are only generated for the original
un-merged topics.
title: Title of the plot.
width: The width of the figure. Only works if orientation is set to 'left'
height: The height of the figure. Only works if orientation is set to 'bottom'
hierarchical_topics: A dataframe that contains a hierarchy of topics
represented by their parents and their children.
NOTE: The hierarchical topic names are only visualized
if both `topics` and `top_n_topics` are not set.
linkage_function: The linkage function to use. Default is:
`lambda x: sch.linkage(x, 'ward', optimal_ordering=True)`
NOTE: Make sure to use the same `linkage_function` as used
in `topic_model.hierarchical_topics`.
distance_function: The distance function to use on the c-TF-IDF matrix. Default is:
`lambda x: 1 - cosine_similarity(x)`.
You can pass any function that returns either a square matrix of
shape (n_samples, n_samples) with zeros on the diagonal and
non-negative values or condensed distance matrix of shape
(n_samples * (n_samples - 1) / 2,) containing the upper
triangular of the distance matrix.
NOTE: Make sure to use the same `distance_function` as used
in `topic_model.hierarchical_topics`.
color_threshold: Value at which the separation of clusters will be made which
will result in different colors for different clusters.
A higher value will typically lead in less colored clusters.
Returns:
fig: A plotly figure
Examples:
To visualize the hierarchical structure of
topics simply run:
```python
topic_model.visualize_hierarchy()
```
If you also want the labels visualized of hierarchical topics,
run the following:
```python
# Extract hierarchical topics and their representations
hierarchical_topics = topic_model.hierarchical_topics(docs)
# Visualize these representations
topic_model.visualize_hierarchy(hierarchical_topics=hierarchical_topics)
```
If you want to save the resulting figure:
```python
fig = topic_model.visualize_hierarchy()
fig.write_html("path/to/file.html")
```
<iframe src="../../getting_started/visualization/hierarchy.html"
style="width:1000px; height: 680px; border: 0px;""></iframe>
"""
if distance_function is None:
distance_function = lambda x: 1 - cosine_similarity(x)
if linkage_function is None:
linkage_function = lambda x: sch.linkage(x, 'ward', optimal_ordering=True)
# Select topics based on top_n and topics args
freq_df = topic_model.get_topic_freq()
freq_df = freq_df.loc[freq_df.Topic != -1, :]
if topics is not None:
topics = list(topics)
elif top_n_topics is not None:
topics = sorted(freq_df.Topic.to_list()[:top_n_topics])
else:
topics = sorted(freq_df.Topic.to_list())
# Select embeddings
all_topics = sorted(list(topic_model.get_topics().keys()))
indices = np.array([all_topics.index(topic) for topic in topics])
# Select topic embeddings
if topic_model.c_tf_idf_ is not None:
embeddings = topic_model.c_tf_idf_[indices]
else:
embeddings = np.array(topic_model.topic_embeddings_)[indices]
# Annotations
if hierarchical_topics is not None and len(topics) == len(freq_df.Topic.to_list()):
annotations = _get_annotations(topic_model=topic_model,
hierarchical_topics=hierarchical_topics,
embeddings=embeddings,
distance_function=distance_function,
linkage_function=linkage_function,
orientation=orientation,
custom_labels=custom_labels)
else:
annotations = None
# wrap distance function to validate input and return a condensed distance matrix
distance_function_viz = lambda x: validate_distance_matrix(
distance_function(x), embeddings.shape[0])
# Create dendogram
fig = ff.create_dendrogram(embeddings,
orientation=orientation,
distfun=distance_function_viz,
linkagefun=linkage_function,
hovertext=annotations,
color_threshold=color_threshold)
# Create nicer labels
axis = "yaxis" if orientation == "left" else "xaxis"
if isinstance(custom_labels, str):
new_labels = [[[str(x), None]] + topic_model.topic_aspects_[custom_labels][x] for x in fig.layout[axis]["ticktext"]]
new_labels = ["_".join([label[0] for label in labels[:4]]) for labels in new_labels]
new_labels = [label if len(label) < 30 else label[:27] + "..." for label in new_labels]
elif topic_model.custom_labels_ is not None and custom_labels:
new_labels = [topic_model.custom_labels_[topics[int(x)] + topic_model._outliers] for x in fig.layout[axis]["ticktext"]]
else:
new_labels = [[[str(topics[int(x)]), None]] + topic_model.get_topic(topics[int(x)])
for x in fig.layout[axis]["ticktext"]]
new_labels = ["_".join([label[0] for label in labels[:4]]) for labels in new_labels]
new_labels = [label if len(label) < 30 else label[:27] + "..." for label in new_labels]
# Stylize layout
fig.update_layout(
plot_bgcolor='#ECEFF1',
template="plotly_white",
title={
'text': f"{title}",
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top',
'font': dict(
size=22,
color="Black")
},
hoverlabel=dict(
bgcolor="white",
font_size=16,
font_family="Rockwell"
),
)
# Stylize orientation
if orientation == "left":
fig.update_layout(height=200 + (15 * len(topics)),
width=width,
yaxis=dict(tickmode="array",
ticktext=new_labels))
# Fix empty space on the bottom of the graph
y_max = max([trace['y'].max() + 5 for trace in fig['data']])
y_min = min([trace['y'].min() - 5 for trace in fig['data']])
fig.update_layout(yaxis=dict(range=[y_min, y_max]))
else:
fig.update_layout(width=200 + (15 * len(topics)),
height=height,
xaxis=dict(tickmode="array",
ticktext=new_labels))
if hierarchical_topics is not None:
for index in [0, 3]:
axis = "x" if orientation == "left" else "y"
xs = [data["x"][index] for data in fig.data if (data["text"] and data[axis][index] > 0)]
ys = [data["y"][index] for data in fig.data if (data["text"] and data[axis][index] > 0)]
hovertext = [data["text"][index] for data in fig.data if (data["text"] and data[axis][index] > 0)]
fig.add_trace(go.Scatter(x=xs, y=ys, marker_color='black',
hovertext=hovertext, hoverinfo="text",
mode='markers', showlegend=False))
return fig
def _get_annotations(topic_model,
hierarchical_topics: pd.DataFrame,
embeddings: csr_matrix,
linkage_function: Callable[[csr_matrix], np.ndarray],
distance_function: Callable[[csr_matrix], csr_matrix],
orientation: str,
custom_labels: bool = False) -> List[List[str]]:
""" Get annotations by replicating linkage function calculation in scipy
Arguments
topic_model: A fitted BERTopic instance.
hierarchical_topics: A dataframe that contains a hierarchy of topics
represented by their parents and their children.
NOTE: The hierarchical topic names are only visualized
if both `topics` and `top_n_topics` are not set.
embeddings: The c-TF-IDF matrix on which to model the hierarchy
linkage_function: The linkage function to use. Default is:
`lambda x: sch.linkage(x, 'ward', optimal_ordering=True)`
NOTE: Make sure to use the same `linkage_function` as used
in `topic_model.hierarchical_topics`.
distance_function: The distance function to use on the c-TF-IDF matrix. Default is:
`lambda x: 1 - cosine_similarity(x)`.
You can pass any function that returns either a square matrix of
shape (n_samples, n_samples) with zeros on the diagonal and
non-negative values or condensed distance matrix of shape
(n_samples * (n_samples - 1) / 2,) containing the upper
triangular of the distance matrix.
NOTE: Make sure to use the same `distance_function` as used
in `topic_model.hierarchical_topics`.
orientation: The orientation of the figure.
Either 'left' or 'bottom'
custom_labels: Whether to use custom topic labels that were defined using
`topic_model.set_topic_labels`.
NOTE: Custom labels are only generated for the original
un-merged topics.
Returns:
text_annotations: Annotations to be used within Plotly's `ff.create_dendogram`
"""
df = hierarchical_topics.loc[hierarchical_topics.Parent_Name != "Top", :]
# Calculate distance
X = distance_function(embeddings)
X = validate_distance_matrix(X, embeddings.shape[0])
# Calculate linkage and generate dendrogram
Z = linkage_function(X)
P = sch.dendrogram(Z, orientation=orientation, no_plot=True)
# store topic no.(leaves) corresponding to the x-ticks in dendrogram
x_ticks = np.arange(5, len(P['leaves']) * 10 + 5, 10)
x_topic = dict(zip(P['leaves'], x_ticks))
topic_vals = dict()
for key, val in x_topic.items():
topic_vals[val] = [key]
parent_topic = dict(zip(df.Parent_ID, df.Topics))
# loop through every trace (scatter plot) in dendrogram
text_annotations = []
for index, trace in enumerate(P['icoord']):
fst_topic = topic_vals[trace[0]]
scnd_topic = topic_vals[trace[2]]
if len(fst_topic) == 1:
if isinstance(custom_labels, str):
fst_name = f"{fst_topic[0]}_" + "_".join(list(zip(*topic_model.topic_aspects_[custom_labels][fst_topic[0]]))[0][:3])
elif topic_model.custom_labels_ is not None and custom_labels:
fst_name = topic_model.custom_labels_[fst_topic[0] + topic_model._outliers]
else:
fst_name = "_".join([word for word, _ in topic_model.get_topic(fst_topic[0])][:5])
else:
for key, value in parent_topic.items():
if set(value) == set(fst_topic):
fst_name = df.loc[df.Parent_ID == key, "Parent_Name"].values[0]
if len(scnd_topic) == 1:
if isinstance(custom_labels, str):
scnd_name = f"{scnd_topic[0]}_" + "_".join(list(zip(*topic_model.topic_aspects_[custom_labels][scnd_topic[0]]))[0][:3])
elif topic_model.custom_labels_ is not None and custom_labels:
scnd_name = topic_model.custom_labels_[scnd_topic[0] + topic_model._outliers]
else:
scnd_name = "_".join([word for word, _ in topic_model.get_topic(scnd_topic[0])][:5])
else:
for key, value in parent_topic.items():
if set(value) == set(scnd_topic):
scnd_name = df.loc[df.Parent_ID == key, "Parent_Name"].values[0]
text_annotations.append([fst_name, "", "", scnd_name])
center = (trace[0] + trace[2]) / 2
topic_vals[center] = fst_topic + scnd_topic
return text_annotations