|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch KOSMOS-2.5 model.""" |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPooling, |
|
CausalLMOutputWithCrossAttentions, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_kosmos2_5 import ( |
|
Kosmos2_5Config, |
|
Kosmos2_5TextConfig, |
|
Kosmos2_5VisionConfig, |
|
) |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = Kosmos2_5Config |
|
|
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), -100.0) |
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
past_key_values_length: int = 0, |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), -100.0, device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat( |
|
[ |
|
torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), |
|
mask, |
|
], |
|
dim=-1, |
|
) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): |
|
""" |
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols |
|
are ignored. This is modified from fairseq's `utils.make_positions`. |
|
|
|
Args: |
|
x: torch.Tensor x: |
|
|
|
Returns: torch.Tensor |
|
""" |
|
|
|
mask = input_ids.ne(padding_idx).int() |
|
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask |
|
return incremental_indices.long() + padding_idx |
|
|
|
|
|
KOSMOS2_5_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`Kosmos2_5Config`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
KOSMOS2_5_VISION_INPUTS_DOCSTRING = r""" |
|
Args: |
|
flattened_patches (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See |
|
[`Kosmos2_5ImageProcessor.__call__`] for details. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
KOSMOS2_5_TEXT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
image_embeds: (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`. |
|
image_embeds_position_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to indicate the location in a sequence to insert the image features . Mask values selected in `[0, |
|
1]`: |
|
|
|
- 1 for places where to put the image features, |
|
- 0 for places that are not for image features (i.e. for text tokens). |
|
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
KOSMOS2_5_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See |
|
[`Kosmos2_5ImageProcessor.__call__`] for details. |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
image_embeds_position_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to indicate the location in a sequence to insert the image features . Mask values selected in `[0, |
|
1]`: |
|
|
|
- 1 for places where to put the image features, |
|
- 0 for places that are not for image features (i.e. for text tokens). |
|
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
image_embeds: (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@dataclass |
|
class Kosmos2_5ModelOutput(ModelOutput): |
|
""" |
|
Base class for text model's outputs that also contains a pooling of the last hidden states. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`. |
|
projection_attentions (`tuple(torch.FloatTensor)`, *optional*): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights given by `Kosmos2ImageToTextProjection`, after the attention softmax, used to compute |
|
the weighted average in the self-attention heads. |
|
vision_model_output(`BaseModelOutputWithPooling`, *optional*): |
|
The output of the [`Kosmos2VisionModel`]. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if |
|
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, |
|
encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if |
|
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` |
|
input) to speed up sequential decoding. |
|
""" |
|
|
|
last_hidden_state: torch.FloatTensor = None |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_embeds: Optional[torch.FloatTensor] = None |
|
projection_attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
vision_model_output: BaseModelOutputWithPooling = None |
|
|
|
def to_tuple(self) -> Tuple[Any]: |
|
return tuple( |
|
(self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()) |
|
for k in self.keys() |
|
) |
|
|
|
|
|
@dataclass |
|
class Kosmos2_5ForConditionalGenerationModelOutput(ModelOutput): |
|
""" |
|
Model output class for `Kosmos2ForConditionalGeneration`. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`. |
|
projection_attentions (`tuple(torch.FloatTensor)`, *optional*): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights given by `Kosmos2ImageToTextProjection`, after the attention softmax, used to compute |
|
the weighted average in the self-attention heads. |
|
vision_model_output(`BaseModelOutputWithPooling`, *optional*): |
|
The output of the [`Kosmos2VisionModel`]. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if |
|
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, |
|
encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if |
|
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` |
|
input) to speed up sequential decoding. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_embeds: Optional[torch.FloatTensor] = None |
|
projection_attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
vision_model_output: BaseModelOutputWithPooling = None |
|
|
|
def to_tuple(self) -> Tuple[Any]: |
|
return tuple( |
|
(self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()) |
|
for k in self.keys() |
|
) |
|
|
|
|
|
|
|
class Kosmos2_5LayerNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
Construct a layernorm module in the T5 style. No bias and no subtraction of mean. |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
|
|
|
|
|
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]: |
|
hidden_states = hidden_states.to(self.weight.dtype) |
|
|
|
return self.weight * hidden_states |
|
|
|
|
|
try: |
|
from apex.normalization import FusedRMSNorm |
|
|
|
Kosmos2_5LayerNorm = FusedRMSNorm |
|
|
|
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of Kosmos2_5LayerNorm") |
|
except ImportError: |
|
|
|
pass |
|
except Exception: |
|
logger.warning("Discovered apex but it failed to load, falling back to Kosmos2_5LayerNorm") |
|
pass |
|
|
|
|
|
|
|
class Kosmos2_5VisionEmbeddings(nn.Module): |
|
def __init__(self, config: Kosmos2_5VisionConfig) -> None: |
|
super().__init__() |
|
self.patch_projection = nn.Linear(config.patch_embed_hidden_size, config.hidden_size) |
|
|
|
self.row_embedder = nn.Embedding(config.seq_len, config.hidden_size) |
|
self.column_embedder = nn.Embedding(config.seq_len, config.hidden_size) |
|
|
|
self.dropout = nn.Dropout(config.dropout_rate, inplace=False) |
|
|
|
def forward(self, flattened_patches: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
row_indices = flattened_patches[:, :, 0].long() |
|
col_indices = flattened_patches[:, :, 1].long() |
|
|
|
flattened_patches = flattened_patches[:, :, 2:] |
|
|
|
embeddings = self.patch_projection(flattened_patches) |
|
row_embeddings = self.row_embedder(row_indices) |
|
col_embeddings = self.column_embedder(col_indices) |
|
|
|
|
|
embeddings = embeddings + row_embeddings + col_embeddings |
|
|
|
embeddings = self.dropout(embeddings) |
|
|
|
return embeddings |
|
|
|
|
|
|
|
class Kosmos2_5VisionMlp(nn.Module): |
|
def __init__(self, config: Kosmos2_5VisionConfig): |
|
super().__init__() |
|
self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False) |
|
self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False) |
|
self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
self.act = ACT2FN[config.dense_act_fn] |
|
|
|
def forward(self, hidden_states): |
|
hidden_gelu = self.act(self.wi_0(hidden_states)) |
|
hidden_linear = self.wi_1(hidden_states) |
|
hidden_states = hidden_gelu * hidden_linear |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
|
|
|
|
|
|
if ( |
|
isinstance(self.wo.weight, torch.Tensor) |
|
and hidden_states.dtype != self.wo.weight.dtype |
|
and self.wo.weight.dtype != torch.int8 |
|
): |
|
hidden_states = hidden_states.to(self.wo.weight.dtype) |
|
|
|
hidden_states = self.wo(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class Kosmos2_5VisionAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.key_value_proj_dim = config.d_kv |
|
self.n_heads = config.num_attention_heads |
|
self.dropout = config.attention_dropout |
|
self.inner_dim = self.n_heads * self.key_value_proj_dim |
|
self.is_causal = False |
|
|
|
|
|
self.query = nn.Linear(self.hidden_size, self.inner_dim, bias=False) |
|
self.key = nn.Linear(self.hidden_size, self.inner_dim, bias=False) |
|
self.value = nn.Linear(self.hidden_size, self.inner_dim, bias=False) |
|
self.output = nn.Linear(self.inner_dim, self.hidden_size, bias=False) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
layer_head_mask=None, |
|
output_attentions=False, |
|
): |
|
""" |
|
Self-attention block |
|
""" |
|
|
|
|
|
|
|
batch_size, seq_length, _ = hidden_states.size() |
|
|
|
query_states = self.query(hidden_states) |
|
key_states = self.key(hidden_states) |
|
value_states = self.value(hidden_states) |
|
|
|
|
|
|
|
query_states = query_states.view(batch_size, seq_length, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
key_states = key_states.view(batch_size, seq_length, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
value_states = value_states.view(batch_size, seq_length, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.key_value_proj_dim) |
|
|
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(batch_size, seq_length, -1) |
|
attn_output = self.output(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class Kosmos2_5VisionFlashAttention2(Kosmos2_5VisionAttention): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
layer_head_mask=None, |
|
output_attentions=False, |
|
): |
|
""" |
|
Flash attn Self-attention block |
|
""" |
|
output_attentions = False |
|
|
|
|
|
batch_size, seq_length, _ = hidden_states.size() |
|
|
|
query_states = self.query(hidden_states) |
|
key_states = self.key(hidden_states) |
|
value_states = self.value(hidden_states) |
|
|
|
|
|
query_states = query_states.view(batch_size, seq_length, self.n_heads, self.key_value_proj_dim) |
|
key_states = key_states.view(batch_size, seq_length, self.n_heads, self.key_value_proj_dim) |
|
value_states = value_states.view(batch_size, seq_length, self.n_heads, self.key_value_proj_dim) |
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
seq_length, |
|
dropout=self.dropout, |
|
) |
|
attn_output = attn_output.view(batch_size, -1, self.inner_dim) |
|
attn_output = self.output(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights |
|
|
|
def _flash_attention_forward( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
query_length, |
|
dropout=0.0, |
|
softmax_scale=None, |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`float`): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
""" |
|
if not self._flash_attn_uses_top_left_mask: |
|
causal = self.is_causal |
|
else: |
|
|
|
causal = self.is_causal and query_length != 1 |
|
|
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
( |
|
query_states, |
|
key_states, |
|
value_states, |
|
indices_q, |
|
cu_seq_lens, |
|
max_seq_lens, |
|
) = self._upad_input(query_states, key_states, value_states, attention_mask, query_length) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
return attn_output |
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis( |
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), |
|
indices_k, |
|
) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), |
|
indices_k, |
|
) |
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim), |
|
indices_k, |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
class Kosmos2_5VisionSdpaAttention(Kosmos2_5VisionAttention): |
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
layer_head_mask=None, |
|
output_attentions=False, |
|
): |
|
if output_attentions: |
|
logger.warning_once( |
|
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
batch_size, seq_length, _ = hidden_states.size() |
|
|
|
query_states = self.query(hidden_states) |
|
key_states = self.key(hidden_states) |
|
value_states = self.value(hidden_states) |
|
|
|
query_states = query_states.view(batch_size, seq_length, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
key_states = key_states.view(batch_size, seq_length, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
value_states = value_states.view(batch_size, seq_length, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
|
|
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
if query_states.device.type == "cuda" and causal_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
|
|
|
|
is_causal = True if causal_mask is None and seq_length > 1 else False |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=attention_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
is_causal=is_causal, |
|
) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(batch_size, seq_length, -1) |
|
|
|
attn_output = self.output(attn_output) |
|
|
|
return attn_output, None |
|
|
|
|
|
KOSMOS2_5_VISION_ATTENTION_CLASSES = { |
|
"eager": Kosmos2_5VisionAttention, |
|
"flash_attention_2": Kosmos2_5VisionFlashAttention2, |
|
"sdpa": Kosmos2_5VisionSdpaAttention, |
|
} |
|
|
|
|
|
|
|
class Kosmos2_5VisionLayer(nn.Module): |
|
def __init__(self, config: Kosmos2_5VisionConfig) -> None: |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.config = config |
|
self.attention = KOSMOS2_5_VISION_ATTENTION_CLASSES[config._attn_implementation](config) |
|
self.mlp = Kosmos2_5VisionMlp(config) |
|
self.pre_mlp_layer_norm = Kosmos2_5LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.pre_attention_layer_norm = Kosmos2_5LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def _prepare_attention_mask(self, attention_mask, input_shape, inputs_embeds): |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
return expanded_attn_mask |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
residual = hidden_states |
|
|
|
|
|
hidden_states = self.pre_attention_layer_norm(hidden_states) |
|
attention_mask = self._prepare_attention_mask(attention_mask, hidden_states.shape[:2], hidden_states) |
|
self_attention_outputs, _ = self.attention( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
layer_head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
outputs = self_attention_outputs[1:] |
|
|
|
|
|
hidden_states = attention_output + residual |
|
|
|
|
|
layer_output = self.pre_mlp_layer_norm(hidden_states) |
|
layer_output = self.mlp(layer_output) + hidden_states |
|
return layer_output, outputs |
|
|
|
|
|
|
|
class Kosmos2_5VisionEncoder(nn.Module): |
|
def __init__(self, config: Kosmos2_5VisionConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([Kosmos2_5VisionLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
) -> Union[tuple, BaseModelOutput]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.__call__, |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
|
|
class Kosmos2_5VisionModel(PreTrainedModel): |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
|
|
def __init__(self, config: Kosmos2_5VisionConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.embeddings = Kosmos2_5VisionEmbeddings(config) |
|
self.encoder = Kosmos2_5VisionEncoder(config) |
|
self.layernorm = Kosmos2_5LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.patch_projection |
|
|
|
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def forward( |
|
self, |
|
flattened_patches: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if flattened_patches is None: |
|
raise ValueError("You have to specify flattened_patches") |
|
|
|
if attention_mask is None: |
|
|
|
attention_mask = (flattened_patches.sum(dim=-1) != 0).float() |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings(flattened_patches) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
sequence_output = self.layernorm(sequence_output) |
|
|
|
if not return_dict: |
|
head_outputs = (sequence_output,) |
|
return head_outputs + encoder_outputs[1:] |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=sequence_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
|
|
class Kosmos2_5TextSinusoidalPositionalEmbedding(nn.Module): |
|
"""This module produces sinusoidal positional embeddings of any length.""" |
|
|
|
|
|
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): |
|
super().__init__() |
|
self.offset = 2 |
|
self.embedding_dim = embedding_dim |
|
self.padding_idx = padding_idx |
|
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) |
|
|
|
|
|
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): |
|
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) |
|
if hasattr(self, "weights"): |
|
|
|
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) |
|
|
|
self.register_buffer("weights", emb_weights, persistent=False) |
|
|
|
@staticmethod |
|
|
|
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): |
|
""" |
|
Build sinusoidal embeddings. |
|
|
|
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of |
|
"Attention Is All You Need". |
|
""" |
|
half_dim = embedding_dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) |
|
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) |
|
if embedding_dim % 2 == 1: |
|
|
|
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) |
|
if padding_idx is not None: |
|
emb[padding_idx, :] = 0 |
|
|
|
return emb.to(torch.get_default_dtype()) |
|
|
|
@torch.no_grad() |
|
def forward( |
|
self, |
|
input_ids: torch.Tensor = None, |
|
inputs_embeds: torch.Tensor = None, |
|
past_key_values_length: int = 0, |
|
position_ids: torch.Tensor = None, |
|
): |
|
if input_ids is not None: |
|
bsz, seq_len = input_ids.size() |
|
if position_ids is None: |
|
|
|
position_ids = create_position_ids_from_input_ids( |
|
input_ids, self.padding_idx, past_key_values_length |
|
).to(input_ids.device) |
|
else: |
|
bsz, seq_len = inputs_embeds.size()[:-1] |
|
if position_ids is None: |
|
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length) |
|
|
|
|
|
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length |
|
if max_pos > self.weights.size(0): |
|
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) |
|
|
|
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach() |
|
|
|
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length): |
|
""" |
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. |
|
|
|
Args: |
|
inputs_embeds: torch.Tensor |
|
|
|
Returns: torch.Tensor |
|
""" |
|
input_shape = inputs_embeds.size()[:-1] |
|
sequence_length = input_shape[1] |
|
|
|
position_ids = torch.arange( |
|
self.padding_idx + 1, |
|
sequence_length + self.padding_idx + 1, |
|
dtype=torch.long, |
|
device=inputs_embeds.device, |
|
) |
|
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length |
|
|
|
|
|
class Kosmos2_5TextFFN(nn.Module): |
|
def __init__(self, config: Kosmos2_5TextConfig): |
|
super().__init__() |
|
|
|
self.dropout = config.dropout |
|
self.activation_fn = ACT2FN[config.activation_function] |
|
self.activation_dropout = config.activation_dropout |
|
|
|
self.fc1 = nn.Linear(config.embed_dim, config.ffn_dim) |
|
self.fc2 = nn.Linear(config.ffn_dim, config.embed_dim) |
|
|
|
self.ffn_layernorm = nn.LayerNorm(config.ffn_dim, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.activation_fn(self.fc1(hidden_states)) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) |
|
hidden_states = self.ffn_layernorm(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
return hidden_states |
|
|
|
|
|
class Kosmos2_5TextAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__( |
|
self, |
|
config, |
|
embed_dim: int, |
|
num_heads: int, |
|
dropout: float = 0.0, |
|
is_decoder: bool = False, |
|
add_inner_attn_layernorm: bool = False, |
|
bias: bool = True, |
|
is_causal=True, |
|
): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.head_dim = embed_dim // num_heads |
|
|
|
if (self.head_dim * num_heads) != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" |
|
f" and `num_heads`: {num_heads})." |
|
) |
|
self.scaling = self.head_dim**-0.5 |
|
self.is_decoder = is_decoder |
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.is_causal = is_causal |
|
|
|
|
|
self.inner_attn_ln = None |
|
if add_inner_attn_layernorm: |
|
self.inner_attn_ln = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
|
|
def _shape(self, projection: torch.Tensor) -> torch.Tensor: |
|
new_projection_shape = projection.size()[:-1] + (self.num_heads, self.head_dim) |
|
|
|
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) |
|
return new_projection |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
batch_size, seq_length = hidden_states.shape[:2] |
|
|
|
|
|
current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
|
|
|
|
if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]: |
|
|
|
key_states = past_key_value[0] |
|
value_states = past_key_value[1] |
|
else: |
|
key_states = self._shape(self.k_proj(current_states)) |
|
value_states = self._shape(self.v_proj(current_states)) |
|
if past_key_value is not None and not is_cross_attention: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
query_states = self._shape(self.q_proj(hidden_states) * self.scaling) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(-1, -2)) |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_states, value_states) |
|
|
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != ( |
|
batch_size, |
|
self.num_heads, |
|
seq_length, |
|
self.head_dim, |
|
): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(batch_size, self.num_heads, seq_length, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1) |
|
|
|
if self.inner_attn_ln is not None: |
|
attn_output = self.inner_attn_ln(attn_output) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class Kosmos2_5TextFlashAttention2(Kosmos2_5TextAttention): |
|
""" |
|
Kosmos2_5 text flash attention module. This module inherits from `Kosmos2_5TextAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
output_attentions = False |
|
is_cross_attention = encoder_hidden_states is not None |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
|
|
|
|
if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]: |
|
|
|
key_states = past_key_value[0] |
|
value_states = past_key_value[1] |
|
else: |
|
key_states = self._shape(self.k_proj(current_states)).transpose(1, 2) |
|
value_states = self._shape(self.v_proj(current_states)).transpose(1, 2) |
|
if past_key_value is not None and not is_cross_attention: |
|
key_states = torch.cat([past_key_value[0], key_states], dim=1) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=1) |
|
|
|
query_states = self._shape(self.q_proj(hidden_states)).transpose(1, 2) |
|
|
|
if self.is_decoder: |
|
past_key_value = (key_states, value_states) |
|
|
|
input_dtype = query_states.dtype |
|
|
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, key_states, value_states, None, q_len, dropout=self.dropout |
|
) |
|
|
|
attn_output = attn_output.view(bsz, -1, self.embed_dim) |
|
|
|
if self.inner_attn_ln is not None: |
|
attn_output = self.inner_attn_ln(attn_output) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _flash_attention_forward( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
query_length, |
|
dropout=0.0, |
|
softmax_scale=None, |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`float`): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
""" |
|
if not self._flash_attn_uses_top_left_mask: |
|
causal = self.is_causal |
|
else: |
|
|
|
causal = self.is_causal and query_length != 1 |
|
|
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
( |
|
query_states, |
|
key_states, |
|
value_states, |
|
indices_q, |
|
cu_seq_lens, |
|
max_seq_lens, |
|
) = self._upad_input(query_states, key_states, value_states, attention_mask, query_length) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
return attn_output |
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis( |
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), |
|
indices_k, |
|
) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), |
|
indices_k, |
|
) |
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), |
|
indices_k, |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
class Kosmos2_5TextSdpaAttention(Kosmos2_5TextAttention): |
|
""" |
|
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
logger.warning_once( |
|
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
past_key_value=past_key_value, |
|
attention_mask=attention_mask, |
|
layer_head_mask=layer_head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
|
|
|
|
if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]: |
|
|
|
key_states = past_key_value[0] |
|
value_states = past_key_value[1] |
|
else: |
|
key_states = self._shape(self.k_proj(current_states)) |
|
value_states = self._shape(self.v_proj(current_states)) |
|
if past_key_value is not None and not is_cross_attention: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
query_states = self._shape(self.q_proj(hidden_states)) |
|
|
|
if self.is_decoder: |
|
past_key_value = (key_states, value_states) |
|
|
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and causal_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
|
|
|
|
is_causal = True if causal_mask is None and q_len > 1 else False |
|
is_causal = is_causal and self.is_causal |
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=causal_mask, |
|
dropout_p=self.dropout if self.training else 0.0, |
|
is_causal=is_causal, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(bsz, q_len, -1) |
|
|
|
if self.inner_attn_ln is not None: |
|
attn_output = self.inner_attn_ln(attn_output) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
return attn_output, None, past_key_value |
|
|
|
|
|
KOSMOS2_5_TEXT_ATTENTION_CLASSES = { |
|
"eager": Kosmos2_5TextAttention, |
|
"flash_attention_2": Kosmos2_5TextFlashAttention2, |
|
"sdpa": Kosmos2_5TextSdpaAttention, |
|
} |
|
|
|
|
|
class Kosmos2_5TextBlock(nn.Module): |
|
def __init__(self, config: Kosmos2_5TextConfig): |
|
super().__init__() |
|
self.embed_dim = config.embed_dim |
|
self.self_attn = KOSMOS2_5_TEXT_ATTENTION_CLASSES[config._attn_implementation]( |
|
config, |
|
embed_dim=self.embed_dim, |
|
num_heads=config.attention_heads, |
|
dropout=config.attention_dropout, |
|
is_decoder=True, |
|
add_inner_attn_layernorm=False, |
|
is_causal=True, |
|
) |
|
self.dropout = config.dropout |
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
if config.add_cross_attention: |
|
self.encoder_attn = KOSMOS2_5_TEXT_ATTENTION_CLASSES[config._attn_implementation]( |
|
config, |
|
embed_dim=self.embed_dim, |
|
num_heads=config.attention_heads, |
|
dropout=config.attention_dropout, |
|
is_decoder=True, |
|
add_inner_attn_layernorm=False, |
|
is_causal=True, |
|
) |
|
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
self.ffn = Kosmos2_5TextFFN(config) |
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_layer_head_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = True, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
residual = hidden_states |
|
|
|
|
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
|
|
hidden_states = self.self_attn_layer_norm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
past_key_value=self_attn_past_key_value, |
|
attention_mask=attention_mask, |
|
layer_head_mask=layer_head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
cross_attn_present_key_value = None |
|
cross_attn_weights = None |
|
if encoder_hidden_states is not None: |
|
if not hasattr(self, "encoder_attn"): |
|
raise ValueError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" |
|
" by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.encoder_attn_layer_norm(hidden_states) |
|
|
|
|
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None |
|
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=cross_attn_past_key_value, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.final_layer_norm(hidden_states) |
|
|
|
|
|
hidden_states = self.ffn(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights, cross_attn_weights) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class Kosmos2_5TextTransformer(nn.Module): |
|
""" |
|
Transformer decoder consisting of `config.layers` layers. Each layer is a [`Kosmos2_5TextBlock`]. |
|
|
|
Args: |
|
config: Kosmos2_5TextConfig |
|
""" |
|
|
|
def __init__(self, config: Kosmos2_5TextConfig): |
|
super().__init__() |
|
self.config = config |
|
self.dropout = config.dropout |
|
self.layerdrop = config.layerdrop |
|
|
|
self.embed_scale = math.sqrt(config.embed_dim) if config.scale_embedding else 1.0 |
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.embed_dim, padding_idx=config.pad_token_id) |
|
|
|
self.embed_positions = Kosmos2_5TextSinusoidalPositionalEmbedding( |
|
num_positions=config.max_position_embeddings, |
|
embedding_dim=config.embed_dim, |
|
padding_idx=config.pad_token_id, |
|
) |
|
self.segment_emb = nn.Embedding(2, config.embed_dim) |
|
|
|
self.layers = nn.ModuleList([Kosmos2_5TextBlock(config) for _ in range(config.layers)]) |
|
self.layer_norm = nn.LayerNorm(config.embed_dim, config.layer_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def forward_embedding( |
|
self, |
|
input_ids, |
|
inputs_embeds: torch.Tensor = None, |
|
image_embeds: torch.Tensor = None, |
|
img_input_mask: torch.Tensor = None, |
|
past_key_values_length: int = 0, |
|
position_ids: torch.Tensor = None, |
|
): |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if image_embeds is not None: |
|
inputs_embeds[img_input_mask == 1] = image_embeds.to(inputs_embeds.device).view(-1, image_embeds.size(-1)) |
|
inputs_embeds = inputs_embeds * self.embed_scale |
|
|
|
positions = None |
|
if self.embed_positions is not None: |
|
positions = self.embed_positions( |
|
input_ids=input_ids, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
position_ids=position_ids, |
|
).to(inputs_embeds.device) |
|
if self.segment_emb is not None: |
|
if img_input_mask is not None: |
|
|
|
img_input_mask = img_input_mask.ne(0).long() |
|
segment_embeds = self.segment_emb(img_input_mask) |
|
positions += segment_embeds |
|
else: |
|
|
|
bsz, seq_len, dim = positions.size() |
|
zero_emb = self.segment_emb(torch.zeros((bsz, 1), dtype=torch.long, device=positions.device)) |
|
positions += zero_emb |
|
|
|
if positions is not None: |
|
hidden_states = inputs_embeds + positions |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
return hidden_states |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
image_embeds: Optional[torch.Tensor] = None, |
|
image_embeds_position_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.shape |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
|
|
if past_key_values_length > 0: |
|
image_embeds = None |
|
image_embeds_position_mask = None |
|
|
|
hidden_states = self.forward_embedding( |
|
input_ids=input_ids, |
|
inputs_embeds=inputs_embeds, |
|
image_embeds=image_embeds, |
|
img_input_mask=image_embeds_position_mask, |
|
past_key_values_length=past_key_values_length, |
|
position_ids=position_ids, |
|
) |
|
|
|
|
|
|
|
causal_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, input_shape, hidden_states, past_key_values_length |
|
) |
|
|
|
|
|
if encoder_hidden_states is not None and encoder_attention_mask is not None: |
|
|
|
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) |
|
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None |
|
present_key_value_states = () if use_cache else None |
|
|
|
|
|
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): |
|
if attn_mask is not None: |
|
if attn_mask.size()[0] != (len(self.layers)): |
|
raise ValueError( |
|
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" |
|
f" {head_mask.size()[0]}." |
|
) |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
if self.training: |
|
dropout_probability = torch.rand([]) |
|
if dropout_probability < self.layerdrop: |
|
continue |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
causal_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
head_mask[idx] if head_mask is not None else None, |
|
(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), |
|
None, |
|
output_attentions, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None), |
|
cross_attn_layer_head_mask=( |
|
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None |
|
), |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
present_key_value_states += (layer_outputs[3 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if encoder_hidden_states is not None: |
|
all_cross_attentions += (layer_outputs[2],) |
|
|
|
|
|
hidden_states = self.layer_norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
present_key_value_states, |
|
all_hidden_states, |
|
all_self_attns, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=present_key_value_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
class Kosmos2_5ImageToTextProjection(nn.Module): |
|
"""The layer that transforms the image model's output to part of the text model's input (namely, image features)""" |
|
|
|
def __init__(self, config: Kosmos2_5Config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.vision_config.hidden_size, config.text_config.embed_dim) |
|
self.latent_query = nn.Parameter(torch.randn(config.latent_query_num, config.text_config.embed_dim)) |
|
self.x_attn = KOSMOS2_5_TEXT_ATTENTION_CLASSES[config._attn_implementation]( |
|
config.text_config, |
|
config.text_config.embed_dim, |
|
config.text_config.attention_heads, |
|
dropout=config.text_config.attention_dropout, |
|
is_decoder=False, |
|
add_inner_attn_layernorm=False, |
|
is_causal=False, |
|
) |
|
|
|
|
|
def forward(self, features): |
|
hidden_states = self.dense(features) |
|
|
|
|
|
latent_query = self.latent_query.unsqueeze(0).expand(hidden_states.size(0), -1, -1) |
|
key_value_states = torch.cat([hidden_states, latent_query], dim=1) |
|
|
|
hidden_states, attn_weights, _ = self.x_attn( |
|
hidden_states=latent_query, |
|
encoder_hidden_states=key_value_states, |
|
past_key_value=None, |
|
attention_mask=None, |
|
output_attentions=None, |
|
) |
|
|
|
return hidden_states, attn_weights |
|
|
|
|
|
class Kosmos2_5PreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = Kosmos2_5Config |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["Kosmos2_5VisionEncoder", "Kosmos2_5TextBlock"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(self, Kosmos2_5VisionModel): |
|
factor = self.config.initializer_factor |
|
elif isinstance(self, (Kosmos2_5Model, Kosmos2_5ForConditionalGeneration)): |
|
factor = self.config.vision_config.initializer_factor |
|
|
|
if isinstance(self, (Kosmos2_5TextModel, Kosmos2_5TextForCausalLM)): |
|
std = self.config.init_std |
|
elif isinstance(self, (Kosmos2_5Model, Kosmos2_5ForConditionalGeneration)): |
|
std = self.config.text_config.init_std |
|
|
|
if isinstance(module, Kosmos2_5VisionEmbeddings): |
|
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) |
|
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) |
|
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) |
|
elif isinstance(module, Kosmos2_5VisionAttention): |
|
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor |
|
out_proj_std = (module.embed_dim**-0.5) * factor |
|
nn.init.normal_(module.q_proj.weight, std=in_proj_std) |
|
nn.init.normal_(module.k_proj.weight, std=in_proj_std) |
|
nn.init.normal_(module.v_proj.weight, std=in_proj_std) |
|
nn.init.normal_(module.out_proj.weight, std=out_proj_std) |
|
if module.q_proj.bias is not None: |
|
module.q_proj.bias.data.zero_() |
|
if module.k_proj.bias is not None: |
|
module.k_proj.bias.data.zero_() |
|
if module.v_proj.bias is not None: |
|
module.v_proj.bias.data.zero_() |
|
if module.out_proj.bias is not None: |
|
module.out_proj.bias.data.zero_() |
|
elif isinstance(module, Kosmos2_5VisionMlp): |
|
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor |
|
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor |
|
nn.init.normal_(module.fc1.weight, std=fc_std) |
|
nn.init.normal_(module.fc2.weight, std=in_proj_std) |
|
if module.fc1.bias is not None: |
|
module.fc1.bias.data.zero_() |
|
if module.fc2.bias is not None: |
|
module.fc2.bias.data.zero_() |
|
elif isinstance(module, Kosmos2_5VisionLayer): |
|
module.pre_layrnorm.bias.data.zero_() |
|
module.pre_layrnorm.weight.data.fill_(1.0) |
|
module.post_layernorm.bias.data.zero_() |
|
module.post_layernorm.weight.data.fill_(1.0) |
|
elif isinstance(module, Kosmos2_5TextAttention): |
|
nn.init.normal_(module.q_proj.weight, std=std) |
|
nn.init.normal_(module.k_proj.weight, std=std) |
|
nn.init.normal_(module.v_proj.weight, std=std) |
|
nn.init.normal_(module.out_proj.weight, std=std) |
|
if module.q_proj.bias is not None: |
|
module.q_proj.bias.data.zero_() |
|
if module.k_proj.bias is not None: |
|
module.k_proj.bias.data.zero_() |
|
if module.v_proj.bias is not None: |
|
module.v_proj.bias.data.zero_() |
|
if module.out_proj.bias is not None: |
|
module.out_proj.bias.data.zero_() |
|
elif isinstance(module, Kosmos2_5TextFFN): |
|
nn.init.normal_(module.fc1.weight, std=std) |
|
nn.init.normal_(module.fc2.weight, std=std) |
|
if module.fc1.bias is not None: |
|
module.fc1.bias.data.zero_() |
|
if module.fc2.bias is not None: |
|
module.fc2.bias.data.zero_() |
|
elif isinstance(module, Kosmos2_5TextForCausalLM): |
|
nn.init.normal_(module.lm_head.weight, std=std) |
|
if module.lm_head.bias is not None: |
|
module.lm_head.bias.data.zero_() |
|
elif isinstance(module, Kosmos2_5ImageToTextProjection): |
|
nn.init.normal_(module.dense.weight, std=std) |
|
if module.dense.bias is not None: |
|
module.dense.bias.data.zero_() |
|
elif isinstance(module, Kosmos2_5TextTransformer): |
|
module.embed_tokens.weight.data.normal_(mean=0.0, std=std) |
|
if module.embed_tokens.padding_idx is not None: |
|
module.embed_tokens.weight.data[module.embed_tokens.padding_idx].zero_() |
|
|
|
|
|
class Kosmos2_5TextModel(Kosmos2_5PreTrainedModel): |
|
config_class = Kosmos2_5TextConfig |
|
|
|
def __init__(self, config: Kosmos2_5TextConfig): |
|
super().__init__(config) |
|
self.model = Kosmos2_5TextTransformer(config) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_5_TEXT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings( |
|
output_type=BaseModelOutputWithPastAndCrossAttentions, |
|
config_class=Kosmos2_5TextConfig, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
image_embeds: Optional[torch.Tensor] = None, |
|
image_embeds_position_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: |
|
r""" |
|
Returns: |
|
|
|
""" |
|
return self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
image_embeds=image_embeds, |
|
image_embeds_position_mask=image_embeds_position_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
head_mask=head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
position_ids=position_ids, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
KOSMOS-2 Model for generating text and image features. The model consists of a vision encoder and a language model. |
|
""", |
|
KOSMOS2_5_START_DOCSTRING, |
|
) |
|
class Kosmos2_5Model(Kosmos2_5PreTrainedModel): |
|
config_class = Kosmos2_5Config |
|
main_input_name = "flattened_patches" |
|
|
|
def __init__(self, config: Kosmos2_5Config): |
|
super().__init__(config) |
|
|
|
self.text_model = Kosmos2_5TextModel(config.text_config) |
|
self.vision_model = Kosmos2_5VisionModel(config.vision_config) |
|
self.image_to_text_projection = Kosmos2_5ImageToTextProjection(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.text_model.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.text_model.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_5_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Kosmos2_5ModelOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
flattened_patches: Optional[torch.Tensor] = None, |
|
input_ids: Optional[torch.Tensor] = None, |
|
image_embeds_position_mask: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
image_embeds: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, Kosmos2_5ModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, Kosmos2_5Model |
|
|
|
>>> model = Kosmos2_5Model.from_pretrained("microsoft/kosmos2.5") |
|
>>> processor = AutoProcessor.from_pretrained("microsoft/kosmos2.5") |
|
|
|
>>> url = "https://huggingface.co/microsoft/kosmos2.5/resolve/main/snowman.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> text = ( |
|
... "<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863>" |
|
... "</object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911>" |
|
... "</object>" |
|
... ) |
|
|
|
>>> inputs = processor(text=text, images=image, return_tensors="pt", add_eos_token=True) |
|
|
|
>>> last_hidden_state = model( |
|
... pixel_values=inputs["pixel_values"], |
|
... input_ids=inputs["input_ids"], |
|
... attention_mask=inputs["attention_mask"], |
|
... image_embeds_position_mask=inputs["image_embeds_position_mask"], |
|
... ).last_hidden_state |
|
>>> list(last_hidden_state.shape) |
|
[1, 91, 2048] |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_model_output = None |
|
projection_attentions = None |
|
if image_embeds is None: |
|
if flattened_patches is None: |
|
raise ValueError("You have to specify either `flattened_patches` or `image_embeds`.") |
|
|
|
vision_model_output = self.vision_model( |
|
flattened_patches=flattened_patches, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0]) |
|
|
|
image_embeds = nn.functional.normalize(image_embeds, dim=-1) |
|
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds) |
|
|
|
outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
image_embeds=image_embeds, |
|
image_embeds_position_mask=image_embeds_position_mask, |
|
head_mask=head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
position_ids=position_ids, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if not return_dict: |
|
outputs = outputs + ( |
|
image_embeds, |
|
projection_attentions, |
|
vision_model_output, |
|
) |
|
return tuple(output for output in outputs if output is not None) |
|
|
|
return Kosmos2_5ModelOutput( |
|
last_hidden_state=outputs.last_hidden_state, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
image_embeds=image_embeds, |
|
projection_attentions=projection_attentions, |
|
vision_model_output=vision_model_output, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The text model from KOSMOS-2.5 with a language modeling head on top (linear layer with weights tied to the input |
|
embeddings). |
|
""", |
|
KOSMOS2_5_START_DOCSTRING, |
|
) |
|
class Kosmos2_5TextForCausalLM(Kosmos2_5PreTrainedModel): |
|
config_class = Kosmos2_5TextConfig |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: Kosmos2_5TextConfig): |
|
super().__init__(config) |
|
|
|
self.model = Kosmos2_5TextTransformer(config) |
|
self.lm_head = nn.Linear(in_features=config.embed_dim, out_features=config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self) -> nn.Module: |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_5_TEXT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=Kosmos2_5TextConfig) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
image_embeds: Optional[torch.Tensor] = None, |
|
image_embeds_position_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in |
|
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are |
|
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
|
|
Returns: |
|
|
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if labels is not None: |
|
if use_cache: |
|
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") |
|
use_cache = False |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
image_embeds=image_embeds, |
|
image_embeds_position_mask=image_embeds_position_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
head_mask=head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
position_ids=position_ids, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
lm_logits = self.lm_head(outputs[0]) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(lm_logits.device) |
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
batch_size, seq_length, vocab_size = shift_logits.shape |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(batch_size * seq_length, vocab_size), |
|
shift_labels.view(batch_size * seq_length), |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
image_embeds=None, |
|
image_embeds_position_mask=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
use_cache=None, |
|
**model_kwargs, |
|
): |
|
input_shape = input_ids.shape |
|
|
|
if attention_mask is None: |
|
attention_mask = input_ids.new_ones(input_shape) |
|
|
|
position_ids = None |
|
|
|
|
|
if past_key_values is not None: |
|
position_ids = create_position_ids_from_input_ids( |
|
input_ids, |
|
padding_idx=self.config.pad_token_id, |
|
past_key_values_length=0, |
|
)[:, -1:] |
|
|
|
input_ids = input_ids[:, -1:] |
|
|
|
image_embeds = None |
|
image_embeds_position_mask = None |
|
elif image_embeds_position_mask is not None: |
|
|
|
batch_size, seq_len = input_ids.size() |
|
mask_len = image_embeds_position_mask.size()[-1] |
|
image_embeds_position_mask = torch.cat( |
|
( |
|
image_embeds_position_mask, |
|
torch.zeros( |
|
size=(batch_size, seq_len - mask_len), |
|
dtype=torch.bool, |
|
device=input_ids.device, |
|
), |
|
), |
|
dim=1, |
|
) |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"image_embeds": image_embeds, |
|
"image_embeds_position_mask": image_embeds_position_mask, |
|
"past_key_values": past_key_values, |
|
"attention_mask": attention_mask, |
|
"position_ids": position_ids, |
|
"use_cache": use_cache, |
|
} |
|
|
|
@staticmethod |
|
|
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
KOSMOS-2.5 Model for generating text and bounding boxes given an image. The model consists of a vision encoder and a |
|
language model. |
|
""", |
|
KOSMOS2_5_START_DOCSTRING, |
|
) |
|
class Kosmos2_5ForConditionalGeneration(Kosmos2_5PreTrainedModel): |
|
config_class = Kosmos2_5Config |
|
main_input_name = "flattened_patches" |
|
_tied_weights_keys = ["text_model.lm_head.weight"] |
|
|
|
def __init__(self, config: Kosmos2_5Config): |
|
super().__init__(config) |
|
|
|
self.text_model = Kosmos2_5TextForCausalLM(config.text_config) |
|
self.vision_model = Kosmos2_5VisionModel(config.vision_config) |
|
self.image_to_text_projection = Kosmos2_5ImageToTextProjection(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.text_model.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.text_model.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self) -> nn.Module: |
|
return self.text_model.get_output_embeddings() |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.text_model.set_output_embeddings(new_embeddings) |
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_5_INPUTS_DOCSTRING) |
|
@replace_return_docstrings( |
|
output_type=Kosmos2_5ForConditionalGenerationModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
flattened_patches: Optional[torch.Tensor] = None, |
|
input_ids: Optional[torch.Tensor] = None, |
|
image_embeds_position_mask: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
image_embeds: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, Kosmos2_5ForConditionalGenerationModelOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in |
|
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are |
|
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
|
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> import torch |
|
>>> from transformers import AutoProcessor, Kosmos2_5ForConditionalGeneration |
|
|
|
>>> repo = "microsoft/kosmos-2.5" |
|
>>> device = "cuda:0" |
|
>>> dtype = torch.bfloat16 # torch.float16 |
|
>>> model = Kosmos2_5ForConditionalGeneration.from_pretrained(repo, device_map=device, torch_dtype=dtype) |
|
>>> processor = AutoProcessor.from_pretrained(repo) |
|
|
|
>>> url = "https://huggingface.co/microsoft/kosmos-2.5/resolve/main/receipt_00008.png" |
|
|
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> prompt = "<ocr>" # <md> |
|
|
|
>>> inputs = processor(text=prompt, images=image, return_tensors="pt") |
|
>>> height, width = inputs.pop("height"), inputs.pop("width") |
|
>>> inputs = {k: v.to(device) if v is not None else None for k, v in inputs.items()} |
|
>>> inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype) |
|
|
|
>>> generated_ids = model.generate(**inputs,max_new_tokens=1024) |
|
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
>>> generated_text |
|
'<ocr><bbox><x_53><y_573><x_69><y_606></bbox>1\n<bbox><x_79><y_573><x_464><y_612></bbox>[REG] BLACK SAKURA\n<bbox><x_690><y_569><x_810><y_606></bbox>45,455\n<bbox><x_53><y_614><x_69><y_648></bbox>1\n<bbox><x_79><y_614><x_468><y_650></bbox>COOKIE DOH SAUCES\n<bbox><x_788><y_609><x_812><y_644></bbox>0\n<bbox><x_50><y_658><x_69><y_693></bbox>1\n<bbox><x_79><y_658><x_358><y_693></bbox>NATA DE COCO\n<bbox><x_790><y_652><x_814><y_687></bbox>0\n<bbox><x_31><y_742><x_820><y_781></bbox>Sub Total 45,455\n<bbox><x_27><y_781><x_822><y_827></bbox>PB1 (10%) 4,545\n<bbox><x_27><y_826><x_824><y_872></bbox>Rounding 0\n<bbox><x_24><y_872><x_827><y_921></bbox>Total 50,000\n<bbox><x_17><y_1056><x_836><y_1108></bbox>Card Payment 50,000\n' |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_model_output = None |
|
projection_attentions = None |
|
if image_embeds is None: |
|
if flattened_patches is None: |
|
raise ValueError("You have to specify either `flattened_patches` or `image_embeds`.") |
|
|
|
vision_model_output = self.vision_model( |
|
flattened_patches=flattened_patches, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
image_embeds = vision_model_output.last_hidden_state |
|
image_embeds = nn.functional.normalize(vision_model_output[0], dim=-1) |
|
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds) |
|
|
|
lm_outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
image_embeds=image_embeds, |
|
image_embeds_position_mask=image_embeds_position_mask, |
|
head_mask=head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
position_ids=position_ids, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if not return_dict: |
|
outputs = lm_outputs + ( |
|
image_embeds, |
|
projection_attentions, |
|
vision_model_output, |
|
) |
|
return tuple(output for output in outputs if output is not None) |
|
|
|
return Kosmos2_5ForConditionalGenerationModelOutput( |
|
loss=lm_outputs.loss, |
|
logits=lm_outputs.logits, |
|
past_key_values=lm_outputs.past_key_values, |
|
hidden_states=lm_outputs.hidden_states, |
|
attentions=lm_outputs.attentions, |
|
image_embeds=image_embeds, |
|
projection_attentions=projection_attentions, |
|
vision_model_output=vision_model_output, |
|
) |
|
|
|
def generate( |
|
self, |
|
flattened_patches: Optional[torch.Tensor] = None, |
|
image_embeds_position_mask: Optional[torch.Tensor] = None, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
image_attention_mask: Optional[torch.Tensor] = None, |
|
image_embeds: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
): |
|
|
|
inputs = kwargs.pop("inputs", None) |
|
if flattened_patches is not None and inputs is not None: |
|
raise ValueError( |
|
f"`inputs`: {inputs} were passed alongside `flattened_patches` which is not allowed." |
|
f"Make sure to either pass `inputs` or flattened_patches=..." |
|
) |
|
if flattened_patches is None and inputs is not None: |
|
flattened_patches = inputs |
|
|
|
if image_embeds is None: |
|
vision_model_output = self.vision_model( |
|
flattened_patches=flattened_patches, |
|
attention_mask=image_attention_mask, |
|
output_hidden_states=True, |
|
) |
|
|
|
image_embeds = nn.functional.normalize(vision_model_output[0], dim=-1) |
|
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds) |
|
output = self.text_model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
image_embeds=image_embeds, |
|
image_embeds_position_mask=image_embeds_position_mask, |
|
**kwargs, |
|
) |
|
|
|
return output |