kingabzpro
commited on
Commit
·
a075b97
1
Parent(s):
f188709
Update README.md
Browse files
README.md
CHANGED
@@ -5,11 +5,45 @@ tags:
|
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- wer
|
|
|
8 |
model-index:
|
9 |
- name: wav2vec2-large-xls-r-300m-hi
|
10 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
-
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
@@ -21,20 +55,61 @@ It achieves the following results on the evaluation set:
|
|
21 |
- Wer: 0.2992
|
22 |
- Cer: 0.0786
|
23 |
|
24 |
-
## Model description
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
|
|
37 |
|
|
|
|
|
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
@@ -65,4 +140,4 @@ The following hyperparameters were used during training:
|
|
65 |
- Transformers 4.33.0
|
66 |
- Pytorch 2.0.0
|
67 |
- Datasets 2.1.0
|
68 |
-
- Tokenizers 0.13.3
|
|
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- wer
|
8 |
+
- cer
|
9 |
model-index:
|
10 |
- name: wav2vec2-large-xls-r-300m-hi
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: Common Voice 15
|
17 |
+
type: mozilla-foundation/common_voice_15_0
|
18 |
+
args: hi
|
19 |
+
metrics:
|
20 |
+
- name: Test WER
|
21 |
+
type: wer
|
22 |
+
value: 0.2934
|
23 |
+
- name: Test CER
|
24 |
+
type: cer
|
25 |
+
value: 0.0786
|
26 |
+
- task:
|
27 |
+
name: Automatic Speech Recognition
|
28 |
+
type: automatic-speech-recognition
|
29 |
+
dataset:
|
30 |
+
name: Common Voice 8
|
31 |
+
type: mozilla-foundation/common_voice_8_0
|
32 |
+
args: hi
|
33 |
+
metrics:
|
34 |
+
- name: Test WER
|
35 |
+
type: wer
|
36 |
+
value: 0.5209
|
37 |
+
- name: Test CER
|
38 |
+
type: cer
|
39 |
+
value: 0.1790
|
40 |
+
datasets:
|
41 |
+
- mozilla-foundation/common_voice_15_0
|
42 |
+
language:
|
43 |
+
- hi
|
44 |
+
library_name: transformers
|
45 |
+
pipeline_tag: automatic-speech-recognition
|
46 |
---
|
|
|
47 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
48 |
should probably proofread and complete it, then remove this comment. -->
|
49 |
|
|
|
55 |
- Wer: 0.2992
|
56 |
- Cer: 0.0786
|
57 |
|
|
|
58 |
|
59 |
+
## Evaluation
|
60 |
+
|
61 |
+
```python
|
62 |
+
import torch
|
63 |
+
from datasets import load_dataset, load_metric
|
64 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
65 |
+
import librosa
|
66 |
+
import unicodedata
|
67 |
+
import re
|
68 |
+
|
69 |
+
|
70 |
+
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "hi", split="test")
|
71 |
+
wer = load_metric("wer")
|
72 |
+
cer = load_metric("cer")
|
73 |
+
|
74 |
+
processor = Wav2Vec2Processor.from_pretrained("kingabzpro/wav2vec2-large-xls-r-300m-hi")
|
75 |
+
model = Wav2Vec2ForCTC.from_pretrained("kingabzpro/wav2vec2-large-xls-r-300m-hi")
|
76 |
+
model.to("cuda")
|
77 |
+
|
78 |
+
|
79 |
+
# Preprocessing the datasets.
|
80 |
+
def speech_file_to_array_fn(batch):
|
81 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\’\'\|\&\–]'
|
82 |
+
remove_en = '[A-Za-z]'
|
83 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"].lower())
|
84 |
+
batch["sentence"] = re.sub(remove_en, "", batch["sentence"]).lower()
|
85 |
+
batch["sentence"] = unicodedata.normalize("NFKC", batch["sentence"])
|
86 |
+
|
87 |
+
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
88 |
+
batch["speech"] = speech_array
|
89 |
+
return batch
|
90 |
+
|
91 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
92 |
|
93 |
+
# Preprocessing the datasets.
|
94 |
+
# We need to read the aduio files as arrays
|
95 |
+
def evaluate(batch):
|
96 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
97 |
|
98 |
+
with torch.no_grad():
|
99 |
+
logits = model(inputs.input_values.to("cuda")).logits
|
100 |
|
101 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
102 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
|
103 |
+
return batch
|
104 |
|
105 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
106 |
|
107 |
+
print("WER: {}".format(wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
108 |
+
print("CER: {}".format(cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
109 |
|
110 |
+
```
|
111 |
+
**WER: 0.5209850206372026**
|
112 |
+
**CER: 0.17902923538230883**
|
113 |
### Training hyperparameters
|
114 |
|
115 |
The following hyperparameters were used during training:
|
|
|
140 |
- Transformers 4.33.0
|
141 |
- Pytorch 2.0.0
|
142 |
- Datasets 2.1.0
|
143 |
+
- Tokenizers 0.13.3
|