kingabzpro
commited on
Commit
·
a43a953
1
Parent(s):
e3c01ee
Update README.md
Browse files
README.md
CHANGED
@@ -23,12 +23,12 @@ model-index:
|
|
23 |
args: ga-IE # Optional. Example: zh-CN
|
24 |
metrics:
|
25 |
- type: wer # Required. Example: wer
|
26 |
-
value:
|
27 |
-
name: Test WER
|
28 |
|
29 |
- type: cer # Required. Example: wer
|
30 |
-
value:
|
31 |
-
name: Test CER
|
32 |
|
33 |
---
|
34 |
|
@@ -43,7 +43,32 @@ It achieves the following results on the evaluation set:
|
|
43 |
- Wer: 0.4236
|
44 |
- Cer: 0.1768
|
45 |
|
|
|
|
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
### Training hyperparameters
|
49 |
|
|
|
23 |
args: ga-IE # Optional. Example: zh-CN
|
24 |
metrics:
|
25 |
- type: wer # Required. Example: wer
|
26 |
+
value: 38.45 # Required. Example: 20.90
|
27 |
+
name: Test WER With LM # Optional. Example: Test WER
|
28 |
|
29 |
- type: cer # Required. Example: wer
|
30 |
+
value: 16.52 # Required. Example: 20.90
|
31 |
+
name: Test CER With LM # Optional. Example: Test WER
|
32 |
|
33 |
---
|
34 |
|
|
|
43 |
- Wer: 0.4236
|
44 |
- Cer: 0.1768
|
45 |
|
46 |
+
#### Evaluation Commands
|
47 |
+
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
|
48 |
|
49 |
+
```bash
|
50 |
+
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Irish --dataset mozilla-foundation/common_voice_8_0 --config ga-IE --split test
|
51 |
+
```
|
52 |
+
|
53 |
+
### Inference With LM
|
54 |
+
|
55 |
+
```python
|
56 |
+
import torch
|
57 |
+
from datasets import load_dataset
|
58 |
+
from transformers import AutoModelForCTC, AutoProcessor
|
59 |
+
import torchaudio.functional as F
|
60 |
+
model_id = "kingabzpro/wav2vec2-large-xls-r-1b-Irish"
|
61 |
+
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ga-IE", split="test", streaming=True, use_auth_token=True))
|
62 |
+
sample = next(sample_iter)
|
63 |
+
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
|
64 |
+
model = AutoModelForCTC.from_pretrained(model_id)
|
65 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
66 |
+
input_values = processor(resampled_audio, return_tensors="pt").input_values
|
67 |
+
with torch.no_grad():
|
68 |
+
logits = model(input_values).logits
|
69 |
+
transcription = processor.batch_decode(logits.numpy()).text
|
70 |
+
|
71 |
+
```
|
72 |
|
73 |
### Training hyperparameters
|
74 |
|