kingabzpro
commited on
Commit
·
f3b84ab
1
Parent(s):
1cece73
Upload LM
Browse files- added_tokens.json +1 -0
- config.json +21 -26
- eval.py +153 -153
- preprocessor_config.json +3 -2
- special_tokens_map.json +1 -1
- tokenizer_config.json +1 -1
- vocab.json +1 -1
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<s>": 55, "</s>": 56}
|
config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
-
"activation_dropout": 0.
|
4 |
"adapter_kernel_size": 3,
|
5 |
"adapter_stride": 2,
|
6 |
"add_adapter": false,
|
@@ -9,12 +9,11 @@
|
|
9 |
"Wav2Vec2ForCTC"
|
10 |
],
|
11 |
"attention_dropout": 0.1,
|
12 |
-
"
|
13 |
-
"bos_token_id": 0,
|
14 |
"classifier_proj_size": 256,
|
15 |
-
"codevector_dim":
|
16 |
"contrastive_logits_temperature": 0.1,
|
17 |
-
"conv_bias":
|
18 |
"conv_dim": [
|
19 |
512,
|
20 |
512,
|
@@ -45,43 +44,41 @@
|
|
45 |
"ctc_loss_reduction": "mean",
|
46 |
"ctc_zero_infinity": false,
|
47 |
"diversity_loss_weight": 0.1,
|
48 |
-
"
|
49 |
-
"do_stable_layer_norm": false,
|
50 |
-
"eos_token": "</s>",
|
51 |
"eos_token_id": 2,
|
52 |
"feat_extract_activation": "gelu",
|
53 |
-
"
|
|
|
54 |
"feat_proj_dropout": 0.0,
|
55 |
"feat_quantizer_dropout": 0.0,
|
56 |
-
"final_dropout": 0.
|
57 |
"gradient_checkpointing": false,
|
58 |
"hidden_act": "gelu",
|
59 |
"hidden_dropout": 0.1,
|
60 |
-
"hidden_size":
|
61 |
"initializer_range": 0.02,
|
62 |
-
"intermediate_size":
|
63 |
"layer_norm_eps": 1e-05,
|
64 |
"layerdrop": 0.0,
|
65 |
-
"mask_feature_length":
|
66 |
"mask_feature_min_masks": 0,
|
67 |
-
"mask_feature_prob": 0.
|
68 |
"mask_time_length": 10,
|
69 |
"mask_time_min_masks": 2,
|
70 |
-
"mask_time_prob": 0.
|
71 |
"model_type": "wav2vec2",
|
72 |
"num_adapter_layers": 3,
|
73 |
-
"num_attention_heads":
|
74 |
"num_codevector_groups": 2,
|
75 |
"num_codevectors_per_group": 320,
|
76 |
"num_conv_pos_embedding_groups": 16,
|
77 |
"num_conv_pos_embeddings": 128,
|
78 |
"num_feat_extract_layers": 7,
|
79 |
-
"num_hidden_layers":
|
80 |
"num_negatives": 100,
|
81 |
-
"output_hidden_size":
|
82 |
-
"
|
83 |
-
"
|
84 |
-
"proj_codevector_dim": 256,
|
85 |
"tdnn_dilation": [
|
86 |
1,
|
87 |
2,
|
@@ -104,10 +101,8 @@
|
|
104 |
1
|
105 |
],
|
106 |
"torch_dtype": "float32",
|
107 |
-
"transformers_version": "4.16.
|
108 |
-
"unk_token": "[UNK]",
|
109 |
"use_weighted_layer_sum": false,
|
110 |
-
"vocab_size":
|
111 |
-
"word_delimiter_token": "|",
|
112 |
"xvector_output_dim": 512
|
113 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
"adapter_kernel_size": 3,
|
5 |
"adapter_stride": 2,
|
6 |
"add_adapter": false,
|
|
|
9 |
"Wav2Vec2ForCTC"
|
10 |
],
|
11 |
"attention_dropout": 0.1,
|
12 |
+
"bos_token_id": 1,
|
|
|
13 |
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 768,
|
15 |
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
"conv_dim": [
|
18 |
512,
|
19 |
512,
|
|
|
44 |
"ctc_loss_reduction": "mean",
|
45 |
"ctc_zero_infinity": false,
|
46 |
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
|
|
|
|
48 |
"eos_token_id": 2,
|
49 |
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
"feat_proj_dropout": 0.0,
|
53 |
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
"gradient_checkpointing": false,
|
56 |
"hidden_act": "gelu",
|
57 |
"hidden_dropout": 0.1,
|
58 |
+
"hidden_size": 1024,
|
59 |
"initializer_range": 0.02,
|
60 |
+
"intermediate_size": 4096,
|
61 |
"layer_norm_eps": 1e-05,
|
62 |
"layerdrop": 0.0,
|
63 |
+
"mask_feature_length": 64,
|
64 |
"mask_feature_min_masks": 0,
|
65 |
+
"mask_feature_prob": 0.25,
|
66 |
"mask_time_length": 10,
|
67 |
"mask_time_min_masks": 2,
|
68 |
+
"mask_time_prob": 0.75,
|
69 |
"model_type": "wav2vec2",
|
70 |
"num_adapter_layers": 3,
|
71 |
+
"num_attention_heads": 16,
|
72 |
"num_codevector_groups": 2,
|
73 |
"num_codevectors_per_group": 320,
|
74 |
"num_conv_pos_embedding_groups": 16,
|
75 |
"num_conv_pos_embeddings": 128,
|
76 |
"num_feat_extract_layers": 7,
|
77 |
+
"num_hidden_layers": 24,
|
78 |
"num_negatives": 100,
|
79 |
+
"output_hidden_size": 1024,
|
80 |
+
"pad_token_id": 54,
|
81 |
+
"proj_codevector_dim": 768,
|
|
|
82 |
"tdnn_dilation": [
|
83 |
1,
|
84 |
2,
|
|
|
101 |
1
|
102 |
],
|
103 |
"torch_dtype": "float32",
|
104 |
+
"transformers_version": "4.16.0",
|
|
|
105 |
"use_weighted_layer_sum": false,
|
106 |
+
"vocab_size": 57,
|
|
|
107 |
"xvector_output_dim": 512
|
108 |
}
|
eval.py
CHANGED
@@ -1,153 +1,153 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
import argparse
|
3 |
-
import re
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
from datasets import Audio, Dataset, load_dataset, load_metric
|
8 |
-
|
9 |
-
from transformers import AutoFeatureExtractor, pipeline
|
10 |
-
|
11 |
-
|
12 |
-
def log_results(result: Dataset, args: Dict[str, str]):
|
13 |
-
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
14 |
-
|
15 |
-
log_outputs = args.log_outputs
|
16 |
-
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
17 |
-
|
18 |
-
# load metric
|
19 |
-
wer = load_metric("wer")
|
20 |
-
cer = load_metric("cer")
|
21 |
-
|
22 |
-
# compute metrics
|
23 |
-
wer_result = wer.compute(
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
)
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
f.
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
text = re.sub(
|
59 |
-
text =
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
#
|
85 |
-
dataset = dataset.
|
86 |
-
|
87 |
-
#
|
88 |
-
|
89 |
-
|
90 |
-
#
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
#
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
default=None,
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
help="
|
150 |
-
)
|
151 |
-
args = parser.parse_args()
|
152 |
-
|
153 |
-
main(args)
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import re
|
4 |
+
from typing import Dict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
8 |
+
|
9 |
+
from transformers import AutoFeatureExtractor, pipeline
|
10 |
+
|
11 |
+
|
12 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
13 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
14 |
+
|
15 |
+
log_outputs = args.log_outputs
|
16 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
17 |
+
|
18 |
+
# load metric
|
19 |
+
wer = load_metric("wer")
|
20 |
+
cer = load_metric("cer")
|
21 |
+
|
22 |
+
# compute metrics
|
23 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
24 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
25 |
+
|
26 |
+
# print & log results
|
27 |
+
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
28 |
+
print(result_str)
|
29 |
+
|
30 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
31 |
+
f.write(result_str)
|
32 |
+
|
33 |
+
# log all results in text file. Possibly interesting for analysis
|
34 |
+
if log_outputs is not None:
|
35 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
36 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
37 |
+
|
38 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
39 |
+
|
40 |
+
# mapping function to write output
|
41 |
+
def write_to_file(batch, i):
|
42 |
+
p.write(f"{i}" + "\n")
|
43 |
+
p.write(batch["prediction"] + "\n")
|
44 |
+
t.write(f"{i}" + "\n")
|
45 |
+
t.write(batch["target"] + "\n")
|
46 |
+
|
47 |
+
result.map(write_to_file, with_indices=True)
|
48 |
+
|
49 |
+
|
50 |
+
def normalize_text(text: str) -> str:
|
51 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
52 |
+
|
53 |
+
chars_to_ignore_regex = """[\!\؛\،\٫\؟\۔\٪\"\'\:\-\‘\’]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
54 |
+
|
55 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
56 |
+
text = re.sub("[،]", '', text)
|
57 |
+
text = re.sub("[؟]", '', text)
|
58 |
+
text = re.sub("['َ]", '', text)
|
59 |
+
text = re.sub("['ُ]", '', text)
|
60 |
+
text = re.sub("['ِ]", '', text)
|
61 |
+
text = re.sub("['ّ]", '', text)
|
62 |
+
text = re.sub("['ٔ]", '', text)
|
63 |
+
text = re.sub("['ٰ]", '', text)
|
64 |
+
# batch["sentence"] = re.sub("[ء]", '', batch["sentence"])
|
65 |
+
# batch["sentence"] = re.sub("[آ]", 'ا', batch["sentence"])
|
66 |
+
text = re.sub("[ۂ]", 'ہ', text)
|
67 |
+
text = re.sub("[ي]", "ی",text)
|
68 |
+
text = re.sub("[ؤ]", "و", text)
|
69 |
+
# batch["sentence"] = re.sub("[ئ]", 'ى', batch["sentence"])
|
70 |
+
text = re.sub("[ى]", 'ی', text)
|
71 |
+
text = re.sub("[۔]", '', text)
|
72 |
+
|
73 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
74 |
+
# note that order is important here!
|
75 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
76 |
+
|
77 |
+
for t in token_sequences_to_ignore:
|
78 |
+
text = " ".join(text.split(t))
|
79 |
+
|
80 |
+
return text
|
81 |
+
|
82 |
+
|
83 |
+
def main(args):
|
84 |
+
# load dataset
|
85 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
86 |
+
|
87 |
+
# for testing: only process the first two examples as a test
|
88 |
+
# dataset = dataset.select(range(10))
|
89 |
+
|
90 |
+
# load processor
|
91 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
92 |
+
sampling_rate = feature_extractor.sampling_rate
|
93 |
+
|
94 |
+
# resample audio
|
95 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
96 |
+
|
97 |
+
# load eval pipeline
|
98 |
+
if args.device is None:
|
99 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
100 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
101 |
+
|
102 |
+
# map function to decode audio
|
103 |
+
def map_to_pred(batch):
|
104 |
+
prediction = asr(
|
105 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
106 |
+
)
|
107 |
+
|
108 |
+
batch["prediction"] = prediction["text"]
|
109 |
+
batch["target"] = normalize_text(batch["sentence"])
|
110 |
+
return batch
|
111 |
+
|
112 |
+
# run inference on all examples
|
113 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
114 |
+
|
115 |
+
# compute and log_results
|
116 |
+
# do not change function below
|
117 |
+
log_results(result, args)
|
118 |
+
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
parser = argparse.ArgumentParser()
|
122 |
+
|
123 |
+
parser.add_argument(
|
124 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
125 |
+
)
|
126 |
+
parser.add_argument(
|
127 |
+
"--dataset",
|
128 |
+
type=str,
|
129 |
+
required=True,
|
130 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
131 |
+
)
|
132 |
+
parser.add_argument(
|
133 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
134 |
+
)
|
135 |
+
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
136 |
+
parser.add_argument(
|
137 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
138 |
+
)
|
139 |
+
parser.add_argument(
|
140 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
141 |
+
)
|
142 |
+
parser.add_argument(
|
143 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
144 |
+
)
|
145 |
+
parser.add_argument(
|
146 |
+
"--device",
|
147 |
+
type=int,
|
148 |
+
default=None,
|
149 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
150 |
+
)
|
151 |
+
args = parser.parse_args()
|
152 |
+
|
153 |
+
main(args)
|
preprocessor_config.json
CHANGED
@@ -3,7 +3,8 @@
|
|
3 |
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
"feature_size": 1,
|
5 |
"padding_side": "right",
|
6 |
-
"padding_value": 0,
|
7 |
-
"
|
|
|
8 |
"sampling_rate": 16000
|
9 |
}
|
|
|
3 |
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
"feature_size": 1,
|
5 |
"padding_side": "right",
|
6 |
+
"padding_value": 0.0,
|
7 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
8 |
+
"return_attention_mask": true,
|
9 |
"sampling_rate": 16000
|
10 |
}
|
special_tokens_map.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
tokenizer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"unk_token": "
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "anuragshas/wav2vec2-large-xls-r-300m-ur-cv8", "tokenizer_class": "Wav2Vec2CTCTokenizer", "processor_class": "Wav2Vec2ProcessorWithLM"}
|
vocab.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"ء": 1, "آ": 2, "ؤ": 3, "ئ": 4, "ا": 5, "ب": 6, "ت": 7, "ث": 8, "ج": 9, "ح": 10, "خ": 11, "د": 12, "ذ": 13, "ر": 14, "ز": 15, "س": 16, "ش": 17, "ص": 18, "ض": 19, "ط": 20, "ظ": 21, "ع": 22, "غ": 23, "ف": 24, "ق": 25, "ل": 26, "م": 27, "ن": 28, "و": 29, "ى": 30, "ي": 31, "ً": 32, "َ": 33, "ُ": 34, "ِ": 35, "ّ": 36, "ٔ": 37, "ٰ": 38, "ٹ": 39, "پ": 40, "چ": 41, "ڈ": 42, "ڑ": 43, "ژ": 44, "ک": 45, "گ": 46, "ں": 47, "ھ": 48, "ہ": 49, "ۂ": 50, "ی": 51, "ے": 52, "|": 0, "[UNK]": 53, "[PAD]": 54}
|