kingabzpro
commited on
Commit
•
d6987d0
1
Parent(s):
c9a33fa
Baseline-First-Commit
Browse files- .gitattributes +1 -0
- Moonman-Lunar-Lander-v2.zip +3 -0
- Moonman-Lunar-Lander-v2/_stable_baselines3_version +1 -0
- Moonman-Lunar-Lander-v2/data +94 -0
- Moonman-Lunar-Lander-v2/policy.optimizer.pth +3 -0
- Moonman-Lunar-Lander-v2/policy.pth +3 -0
- Moonman-Lunar-Lander-v2/pytorch_variables.pth +3 -0
- Moonman-Lunar-Lander-v2/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
Moonman-Lunar-Lander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36268340204a4ee48b64a5a3710de89d81370e3bc7790e04d1e6b74bcd55a2f7
|
3 |
+
size 144040
|
Moonman-Lunar-Lander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
Moonman-Lunar-Lander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa67a42a3b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa67a42a440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa67a42a4d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa67a42a560>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa67a42a5f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa67a42a680>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa67a42a710>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa67a42a7a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa67a42a830>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa67a42a8c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa67a42a950>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fa67a464f30>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652261307.0012295,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABc4TzyZgA/EcQhPiw5NL6dMzU8DZatOwAAAAAAAAAApoZ2Po8uHT166N68xssQPQPisD6XHLU7AACAPwAAAACTjg6+FPbXugAJuDtHis44Y8wxPIrTr7kAAIA/AACAP82FHT1zasQ+On2APt3nOL6v2/y7Ah7qPAAAAAAAAAAA2hzRPvBTWT/Vllg9qpVtvnPbWj2dCXW9AAAAAAAAAAD2LKU+QWrkvMo0WLuzv8K45FMXvp7+j7oAAIA/AACAP1101D58JhA9S3Z6uXOThLZEXp+6+WedOAAAgD8AAIA/mtAnPoxMCT4b9I88RDCJvga6br3j4SO9AAAAAAAAAACTRI2+Md1XP6KMKT152oS+1hqgvUJ3gzwAAAAAAAAAAE0LvT0fJbG5YGo+O1GgczZbI/I78xdkugAAgD8AAIA/TZCFvRRMkbpMbhu6bV0JtfFx3rhCODQ5AACAPwAAgD8zXqa8w+lgushUwjyOEmA6SAvFOpthOzsAAIA/AACAP2Zfy71c33260PCDuuQEBDV2Vx27Gz+WOQAAgD8AAIA/s1UFvYXzlrkn2Rg4PT2fthwuRzvz5yy3AACAPwAAgD/mk2k9FAyqunPl2bl/3Uu2QHnBOr2m+jgAAIA/AACAP40EoT2UlSc+JqdaPVxXVb4RwI+9klkCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwoh9AiijUkCUhpRSlIwBbJRN6AOMAXSUR0B7GbvG6wt8dX2UKGgGaAloD0MIEcMOY9LuUkCUhpRSlGgVTegDaBZHQHswMqBmPHV1fZQoaAZoCWgPQwhvLZPhePlgwJSGlFKUaBVNdAFoFkdAezXdv863iXV9lChoBmgJaA9DCASuK2aETVVAlIaUUpRoFU3oA2gWR0B7Nt8WsRxtdX2UKGgGaAloD0MIC+2cZoGEQsCUhpRSlGgVTUoBaBZHQHtAcvIwM6R1fZQoaAZoCWgPQwjhtOBF38RhQJSGlFKUaBVN6ANoFkdAe1WUBGQSz3V9lChoBmgJaA9DCInuWddoYVVAlIaUUpRoFU3oA2gWR0B7o1utOmBOdX2UKGgGaAloD0MIT5KumXxfWECUhpRSlGgVTegDaBZHQHvB/PkaMrF1fZQoaAZoCWgPQwjuBtFa0YxfQJSGlFKUaBVN6ANoFkdAe8iz8P4EfXV9lChoBmgJaA9DCGyTisba+VpAlIaUUpRoFU3oA2gWR0B74SETQE6ldX2UKGgGaAloD0MIgjtQpzykScCUhpRSlGgVS+poFkdAe/72HLzPKXV9lChoBmgJaA9DCCqNmNlnsWRAlIaUUpRoFU3oA2gWR0B8HE6XBxgidX2UKGgGaAloD0MIkBZnDHOWY0CUhpRSlGgVTegDaBZHQHwpLzbvgFZ1fZQoaAZoCWgPQwi++Q0TDb5RQJSGlFKUaBVN6ANoFkdAfCp5z5oGp3V9lChoBmgJaA9DCDBMpgpG7VJAlIaUUpRoFU3oA2gWR0B8OoOSW7e3dX2UKGgGaAloD0MICd0lcVZfXUCUhpRSlGgVTegDaBZHQHw8N9lVcUx1fZQoaAZoCWgPQwg+6q9XWH5WwJSGlFKUaBVNvAFoFkdAfD1bbUPQOXV9lChoBmgJaA9DCMwmwLD8KSpAlIaUUpRoFUvlaBZHQHxiUR8MNMJ1fZQoaAZoCWgPQwjzOuKQjTJkQJSGlFKUaBVN6ANoFkdAfGMpHI6sAHV9lChoBmgJaA9DCJM2VfdIfGFAlIaUUpRoFU3oA2gWR0B8Y3OD8LrpdX2UKGgGaAloD0MIwOrIkc6gLkCUhpRSlGgVS/doFkdAfGgtIClrM3V9lChoBmgJaA9DCHb6QV2kW1pAlIaUUpRoFU3oA2gWR0B8em44Ia99dX2UKGgGaAloD0MIomMHlbiSTkCUhpRSlGgVTegDaBZHQHyABun/DLt1fZQoaAZoCWgPQwipvvOLEsdXQJSGlFKUaBVN6ANoFkdAfIEI3irDInV9lChoBmgJaA9DCKneGtgqP15AlIaUUpRoFU3oA2gWR0B8ihvS+g14dX2UKGgGaAloD0MIesN95FbKaECUhpRSlGgVTYcBaBZHQHyfsm8dxQ11fZQoaAZoCWgPQwi1bK0vEuBSQJSGlFKUaBVN6ANoFkdAfKBH9WIXTHV9lChoBmgJaA9DCMajVMITf11AlIaUUpRoFU3oA2gWR0B87haFEiMYdX2UKGgGaAloD0MIO3MPCd+BQsCUhpRSlGgVS/loFkdAfSgJz1bqyHV9lChoBmgJaA9DCGHD0ytlbmlAlIaUUpRoFU2EAmgWR0B9K1awD/2kdX2UKGgGaAloD0MI/pjWpjG9ZECUhpRSlGgVTegDaBZHQH0vVrdnCfp1fZQoaAZoCWgPQwjfxJCcTPlWQJSGlFKUaBVN6ANoFkdAfU/j9GZuynV9lChoBmgJaA9DCHCZ02UxD1xAlIaUUpRoFU3oA2gWR0B9bcdeY2KmdX2UKGgGaAloD0MIJeZZSSt1acCUhpRSlGgVTewBaBZHQH1uKKk2xY91fZQoaAZoCWgPQwgujV94JZtZQJSGlFKUaBVN6ANoFkdAfZKwNLDhtXV9lChoBmgJaA9DCHyb/uxH92xAlIaUUpRoFU1uAWgWR0B9lBOk+HJtdX2UKGgGaAloD0MI5C7CFOXGV0CUhpRSlGgVTegDaBZHQH2+m9YfW+Z1fZQoaAZoCWgPQwgUJLa7B4dRQJSGlFKUaBVN6ANoFkdAfb+dY4hllXV9lChoBmgJaA9DCJTZIJOMeGBAlIaUUpRoFU3oA2gWR0B9v/FaSs8xdX2UKGgGaAloD0MI1owMchfdWkCUhpRSlGgVTegDaBZHQH3E1b7j1f51fZQoaAZoCWgPQwiJeVbSih5YQJSGlFKUaBVN6ANoFkdAfdVYUFjd6HV9lChoBmgJaA9DCIlDNpAu/FpAlIaUUpRoFU3oA2gWR0B92m2a2F37dX2UKGgGaAloD0MIaqD5nLv0VkCUhpRSlGgVTegDaBZHQH3bUcjqv/11fZQoaAZoCWgPQwiqDONuEKtkQJSGlFKUaBVNjgFoFkdAfdyQfIS13XV9lChoBmgJaA9DCFsjgnFwX1xAlIaUUpRoFU3oA2gWR0B94g7o0Q9SdX2UKGgGaAloD0MIWrdB7bc+N8CUhpRSlGgVTTwBaBZHQH3k22oegct1fZQoaAZoCWgPQwiTGARWDi3AP5SGlFKUaBVNPQFoFkdAfeXc2R7qp3V9lChoBmgJaA9DCAjlfRzN+TZAlIaUUpRoFUv6aBZHQH31GKEWZZ11fZQoaAZoCWgPQwgO2xZlNmBLQJSGlFKUaBVN6ANoFkdAffaOtW+49XV9lChoBmgJaA9DCHdM3ZVdiCRAlIaUUpRoFU0WAWgWR0B+Zg/FBIFvdX2UKGgGaAloD0MIQkKUL2gPScCUhpRSlGgVTToBaBZHQH5oHxvvSc91fZQoaAZoCWgPQwi5NlSM89FdQJSGlFKUaBVN6ANoFkdAfnPyMDOkcnV9lChoBmgJaA9DCEd0z7pGb05AlIaUUpRoFU3oA2gWR0B+enOiWVu8dX2UKGgGaAloD0MI4IRCBJzGaECUhpRSlGgVTfwBaBZHQH57fGhmGud1fZQoaAZoCWgPQwjC9/4G7QlYQJSGlFKUaBVN6ANoFkdAfpoTrmhdt3V9lChoBmgJaA9DCM9KWvENzFtAlIaUUpRoFU3oA2gWR0B+uBEH+qBFdX2UKGgGaAloD0MIdji6SncBS8CUhpRSlGgVTQYBaBZHQH7D9yxRl6J1fZQoaAZoCWgPQwi1xMpo5Lc+wJSGlFKUaBVL3WgWR0B/BtoQFs55dX2UKGgGaAloD0MIIhgHl46GW0CUhpRSlGgVTegDaBZHQH8MMrupjtp1fZQoaAZoCWgPQwgwLeqT3NdgQJSGlFKUaBVN6ANoFkdAfxIg7o0Q9XV9lChoBmgJaA9DCLR3RluV4l5AlIaUUpRoFU3oA2gWR0B/Jzqmj0tidX2UKGgGaAloD0MIPX/aqE59YkCUhpRSlGgVTegDaBZHQH8tVUMoc711fZQoaAZoCWgPQwhMVG8NbP1cQJSGlFKUaBVN6ANoFkdAfy5m78Nx2nV9lChoBmgJaA9DCO0Q/7Cl4VhAlIaUUpRoFU3oA2gWR0B/O0bedkJ8dX2UKGgGaAloD0MIomKcvwmJVECUhpRSlGgVTegDaBZHQH88sDGLk0d1fZQoaAZoCWgPQwjECrd8JOtXQJSGlFKUaBVN6ANoFkdAf0+V6/qPfnV9lChoBmgJaA9DCLQCQ1a3YWFAlIaUUpRoFU3oA2gWR0B/UT7wazeGdX2UKGgGaAloD0MIOV/svfjLV0CUhpRSlGgVTegDaBZHQH/EPhQ3xWl1fZQoaAZoCWgPQwj1ZP7RN/ZQQJSGlFKUaBVN6ANoFkdAf8YtUXHim3V9lChoBmgJaA9DCFzmdFnMRGVAlIaUUpRoFU3oA2gWR0B/0fjghr31dX2UKGgGaAloD0MIiujX1k97WECUhpRSlGgVTegDaBZHQH/Zt3bEgnt1fZQoaAZoCWgPQwhCz2bV5xdjQJSGlFKUaBVN6ANoFkdAf/hP+GXXy3V9lChoBmgJaA9DCPc96q/XZGpAlIaUUpRoFU0AAmgWR0B/+28BdUsGdX2UKGgGaAloD0MI6fLmcK14T0CUhpRSlGgVTegDaBZHQIALJYDDCP91fZQoaAZoCWgPQwixxAPKph5nQJSGlFKUaBVNxQJoFkdAgCOFqSHM2XV9lChoBmgJaA9DCP3YJD/iNlpAlIaUUpRoFU3oA2gWR0CANRAPd2xIdX2UKGgGaAloD0MIpbvrbMgQXkCUhpRSlGgVTegDaBZHQIA3qBun/DN1fZQoaAZoCWgPQwgebRyxFp1DQJSGlFKUaBVN6ANoFkdAgDsns9jgAXV9lChoBmgJaA9DCDj3V497VGFAlIaUUpRoFU3oA2gWR0CARmLG7z06dX2UKGgGaAloD0MIyqZc4d30YECUhpRSlGgVTegDaBZHQIBJMyWRigF1fZQoaAZoCWgPQwjbp+MxgylhQJSGlFKUaBVN6ANoFkdAgE/sPatcOnV9lChoBmgJaA9DCOHUB5J3kltAlIaUUpRoFU3oA2gWR0CAWqNMoMKDdX2UKGgGaAloD0MINLvurUgqYUCUhpRSlGgVTegDaBZHQIBblL39JjF1fZQoaAZoCWgPQwjP29jsSJ9BQJSGlFKUaBVNTwFoFkdAgIr3/o7muHV9lChoBmgJaA9DCIc0KnCyYmBAlIaUUpRoFU3oA2gWR0CAlHWxyGSIdX2UKGgGaAloD0MIFCNL5tgYYECUhpRSlGgVTegDaBZHQICVaqwQlKN1fZQoaAZoCWgPQwgDl8eakT5VQJSGlFKUaBVN6ANoFkdAgJsSeqaPS3V9lChoBmgJaA9DCOrOE8/ZElRAlIaUUpRoFU3oA2gWR0CAnqVeKKpDdX2UKGgGaAloD0MIAn/4+W8vYkCUhpRSlGgVTegDaBZHQICstSqEOAl1fZQoaAZoCWgPQwhKCFbVy6JiQJSGlFKUaBVN6ANoFkdAgK4fbj94vHV9lChoBmgJaA9DCCL+YUuP1lhAlIaUUpRoFU3oA2gWR0CAuwxsVLzxdX2UKGgGaAloD0MIH4MVp9pmZkCUhpRSlGgVTeoCaBZHQIC+eQfZElV1fZQoaAZoCWgPQwjttgvN9XBhQJSGlFKUaBVN6ANoFkdAgNDsySFGonV9lChoBmgJaA9DCH/7OnDOHWNAlIaUUpRoFU3oA2gWR0CA4BzoUzsQdX2UKGgGaAloD0MI3GPpQxcIYkCUhpRSlGgVTegDaBZHQIDwVWGRFJB1fZQoaAZoCWgPQwgNNJ9zt0BhQJSGlFKUaBVN6ANoFkdAgPONZ3cHnnV9lChoBmgJaA9DCGzM64hDmEhAlIaUUpRoFU3oA2gWR0CA+0S3b212dX2UKGgGaAloD0MIct9qnbh8W8CUhpRSlGgVTScBaBZHQID8sjRlYlp1fZQoaAZoCWgPQwgsfeiC+kJlQJSGlFKUaBVN6ANoFkdAgQcU+s5n13V9lChoBmgJaA9DCB3HD5XGG2NAlIaUUpRoFU3oA2gWR0CBCAf+0gKXdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
Moonman-Lunar-Lander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77093c06f16c3f6962883177c62491878bc6c646639b71f29810de7221698468
|
3 |
+
size 84829
|
Moonman-Lunar-Lander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85c785fcd93f0f48d27d033850218cc297c988c6b1d6179d61c0d1e42e96a820
|
3 |
+
size 43201
|
Moonman-Lunar-Lander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
Moonman-Lunar-Lander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 114.32 +/- 89.92
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa67a42a3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa67a42a440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa67a42a4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa67a42a560>", "_build": "<function ActorCriticPolicy._build at 0x7fa67a42a5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa67a42a680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa67a42a710>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa67a42a7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa67a42a830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa67a42a8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa67a42a950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa67a464f30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652261307.0012295, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABc4TzyZgA/EcQhPiw5NL6dMzU8DZatOwAAAAAAAAAApoZ2Po8uHT166N68xssQPQPisD6XHLU7AACAPwAAAACTjg6+FPbXugAJuDtHis44Y8wxPIrTr7kAAIA/AACAP82FHT1zasQ+On2APt3nOL6v2/y7Ah7qPAAAAAAAAAAA2hzRPvBTWT/Vllg9qpVtvnPbWj2dCXW9AAAAAAAAAAD2LKU+QWrkvMo0WLuzv8K45FMXvp7+j7oAAIA/AACAP1101D58JhA9S3Z6uXOThLZEXp+6+WedOAAAgD8AAIA/mtAnPoxMCT4b9I88RDCJvga6br3j4SO9AAAAAAAAAACTRI2+Md1XP6KMKT152oS+1hqgvUJ3gzwAAAAAAAAAAE0LvT0fJbG5YGo+O1GgczZbI/I78xdkugAAgD8AAIA/TZCFvRRMkbpMbhu6bV0JtfFx3rhCODQ5AACAPwAAgD8zXqa8w+lgushUwjyOEmA6SAvFOpthOzsAAIA/AACAP2Zfy71c33260PCDuuQEBDV2Vx27Gz+WOQAAgD8AAIA/s1UFvYXzlrkn2Rg4PT2fthwuRzvz5yy3AACAPwAAgD/mk2k9FAyqunPl2bl/3Uu2QHnBOr2m+jgAAIA/AACAP40EoT2UlSc+JqdaPVxXVb4RwI+9klkCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwoh9AiijUkCUhpRSlIwBbJRN6AOMAXSUR0B7GbvG6wt8dX2UKGgGaAloD0MIEcMOY9LuUkCUhpRSlGgVTegDaBZHQHswMqBmPHV1fZQoaAZoCWgPQwhvLZPhePlgwJSGlFKUaBVNdAFoFkdAezXdv863iXV9lChoBmgJaA9DCASuK2aETVVAlIaUUpRoFU3oA2gWR0B7Nt8WsRxtdX2UKGgGaAloD0MIC+2cZoGEQsCUhpRSlGgVTUoBaBZHQHtAcvIwM6R1fZQoaAZoCWgPQwjhtOBF38RhQJSGlFKUaBVN6ANoFkdAe1WUBGQSz3V9lChoBmgJaA9DCInuWddoYVVAlIaUUpRoFU3oA2gWR0B7o1utOmBOdX2UKGgGaAloD0MIT5KumXxfWECUhpRSlGgVTegDaBZHQHvB/PkaMrF1fZQoaAZoCWgPQwjuBtFa0YxfQJSGlFKUaBVN6ANoFkdAe8iz8P4EfXV9lChoBmgJaA9DCGyTisba+VpAlIaUUpRoFU3oA2gWR0B74SETQE6ldX2UKGgGaAloD0MIgjtQpzykScCUhpRSlGgVS+poFkdAe/72HLzPKXV9lChoBmgJaA9DCCqNmNlnsWRAlIaUUpRoFU3oA2gWR0B8HE6XBxgidX2UKGgGaAloD0MIkBZnDHOWY0CUhpRSlGgVTegDaBZHQHwpLzbvgFZ1fZQoaAZoCWgPQwi++Q0TDb5RQJSGlFKUaBVN6ANoFkdAfCp5z5oGp3V9lChoBmgJaA9DCDBMpgpG7VJAlIaUUpRoFU3oA2gWR0B8OoOSW7e3dX2UKGgGaAloD0MICd0lcVZfXUCUhpRSlGgVTegDaBZHQHw8N9lVcUx1fZQoaAZoCWgPQwg+6q9XWH5WwJSGlFKUaBVNvAFoFkdAfD1bbUPQOXV9lChoBmgJaA9DCMwmwLD8KSpAlIaUUpRoFUvlaBZHQHxiUR8MNMJ1fZQoaAZoCWgPQwjzOuKQjTJkQJSGlFKUaBVN6ANoFkdAfGMpHI6sAHV9lChoBmgJaA9DCJM2VfdIfGFAlIaUUpRoFU3oA2gWR0B8Y3OD8LrpdX2UKGgGaAloD0MIwOrIkc6gLkCUhpRSlGgVS/doFkdAfGgtIClrM3V9lChoBmgJaA9DCHb6QV2kW1pAlIaUUpRoFU3oA2gWR0B8em44Ia99dX2UKGgGaAloD0MIomMHlbiSTkCUhpRSlGgVTegDaBZHQHyABun/DLt1fZQoaAZoCWgPQwipvvOLEsdXQJSGlFKUaBVN6ANoFkdAfIEI3irDInV9lChoBmgJaA9DCKneGtgqP15AlIaUUpRoFU3oA2gWR0B8ihvS+g14dX2UKGgGaAloD0MIesN95FbKaECUhpRSlGgVTYcBaBZHQHyfsm8dxQ11fZQoaAZoCWgPQwi1bK0vEuBSQJSGlFKUaBVN6ANoFkdAfKBH9WIXTHV9lChoBmgJaA9DCMajVMITf11AlIaUUpRoFU3oA2gWR0B87haFEiMYdX2UKGgGaAloD0MIO3MPCd+BQsCUhpRSlGgVS/loFkdAfSgJz1bqyHV9lChoBmgJaA9DCGHD0ytlbmlAlIaUUpRoFU2EAmgWR0B9K1awD/2kdX2UKGgGaAloD0MI/pjWpjG9ZECUhpRSlGgVTegDaBZHQH0vVrdnCfp1fZQoaAZoCWgPQwjfxJCcTPlWQJSGlFKUaBVN6ANoFkdAfU/j9GZuynV9lChoBmgJaA9DCHCZ02UxD1xAlIaUUpRoFU3oA2gWR0B9bcdeY2KmdX2UKGgGaAloD0MIJeZZSSt1acCUhpRSlGgVTewBaBZHQH1uKKk2xY91fZQoaAZoCWgPQwgujV94JZtZQJSGlFKUaBVN6ANoFkdAfZKwNLDhtXV9lChoBmgJaA9DCHyb/uxH92xAlIaUUpRoFU1uAWgWR0B9lBOk+HJtdX2UKGgGaAloD0MI5C7CFOXGV0CUhpRSlGgVTegDaBZHQH2+m9YfW+Z1fZQoaAZoCWgPQwgUJLa7B4dRQJSGlFKUaBVN6ANoFkdAfb+dY4hllXV9lChoBmgJaA9DCJTZIJOMeGBAlIaUUpRoFU3oA2gWR0B9v/FaSs8xdX2UKGgGaAloD0MI1owMchfdWkCUhpRSlGgVTegDaBZHQH3E1b7j1f51fZQoaAZoCWgPQwiJeVbSih5YQJSGlFKUaBVN6ANoFkdAfdVYUFjd6HV9lChoBmgJaA9DCIlDNpAu/FpAlIaUUpRoFU3oA2gWR0B92m2a2F37dX2UKGgGaAloD0MIaqD5nLv0VkCUhpRSlGgVTegDaBZHQH3bUcjqv/11fZQoaAZoCWgPQwiqDONuEKtkQJSGlFKUaBVNjgFoFkdAfdyQfIS13XV9lChoBmgJaA9DCFsjgnFwX1xAlIaUUpRoFU3oA2gWR0B94g7o0Q9SdX2UKGgGaAloD0MIWrdB7bc+N8CUhpRSlGgVTTwBaBZHQH3k22oegct1fZQoaAZoCWgPQwiTGARWDi3AP5SGlFKUaBVNPQFoFkdAfeXc2R7qp3V9lChoBmgJaA9DCAjlfRzN+TZAlIaUUpRoFUv6aBZHQH31GKEWZZ11fZQoaAZoCWgPQwgO2xZlNmBLQJSGlFKUaBVN6ANoFkdAffaOtW+49XV9lChoBmgJaA9DCHdM3ZVdiCRAlIaUUpRoFU0WAWgWR0B+Zg/FBIFvdX2UKGgGaAloD0MIQkKUL2gPScCUhpRSlGgVTToBaBZHQH5oHxvvSc91fZQoaAZoCWgPQwi5NlSM89FdQJSGlFKUaBVN6ANoFkdAfnPyMDOkcnV9lChoBmgJaA9DCEd0z7pGb05AlIaUUpRoFU3oA2gWR0B+enOiWVu8dX2UKGgGaAloD0MI4IRCBJzGaECUhpRSlGgVTfwBaBZHQH57fGhmGud1fZQoaAZoCWgPQwjC9/4G7QlYQJSGlFKUaBVN6ANoFkdAfpoTrmhdt3V9lChoBmgJaA9DCM9KWvENzFtAlIaUUpRoFU3oA2gWR0B+uBEH+qBFdX2UKGgGaAloD0MIdji6SncBS8CUhpRSlGgVTQYBaBZHQH7D9yxRl6J1fZQoaAZoCWgPQwi1xMpo5Lc+wJSGlFKUaBVL3WgWR0B/BtoQFs55dX2UKGgGaAloD0MIIhgHl46GW0CUhpRSlGgVTegDaBZHQH8MMrupjtp1fZQoaAZoCWgPQwgwLeqT3NdgQJSGlFKUaBVN6ANoFkdAfxIg7o0Q9XV9lChoBmgJaA9DCLR3RluV4l5AlIaUUpRoFU3oA2gWR0B/Jzqmj0tidX2UKGgGaAloD0MIPX/aqE59YkCUhpRSlGgVTegDaBZHQH8tVUMoc711fZQoaAZoCWgPQwhMVG8NbP1cQJSGlFKUaBVN6ANoFkdAfy5m78Nx2nV9lChoBmgJaA9DCO0Q/7Cl4VhAlIaUUpRoFU3oA2gWR0B/O0bedkJ8dX2UKGgGaAloD0MIomKcvwmJVECUhpRSlGgVTegDaBZHQH88sDGLk0d1fZQoaAZoCWgPQwjECrd8JOtXQJSGlFKUaBVN6ANoFkdAf0+V6/qPfnV9lChoBmgJaA9DCLQCQ1a3YWFAlIaUUpRoFU3oA2gWR0B/UT7wazeGdX2UKGgGaAloD0MIOV/svfjLV0CUhpRSlGgVTegDaBZHQH/EPhQ3xWl1fZQoaAZoCWgPQwj1ZP7RN/ZQQJSGlFKUaBVN6ANoFkdAf8YtUXHim3V9lChoBmgJaA9DCFzmdFnMRGVAlIaUUpRoFU3oA2gWR0B/0fjghr31dX2UKGgGaAloD0MIiujX1k97WECUhpRSlGgVTegDaBZHQH/Zt3bEgnt1fZQoaAZoCWgPQwhCz2bV5xdjQJSGlFKUaBVN6ANoFkdAf/hP+GXXy3V9lChoBmgJaA9DCPc96q/XZGpAlIaUUpRoFU0AAmgWR0B/+28BdUsGdX2UKGgGaAloD0MI6fLmcK14T0CUhpRSlGgVTegDaBZHQIALJYDDCP91fZQoaAZoCWgPQwixxAPKph5nQJSGlFKUaBVNxQJoFkdAgCOFqSHM2XV9lChoBmgJaA9DCP3YJD/iNlpAlIaUUpRoFU3oA2gWR0CANRAPd2xIdX2UKGgGaAloD0MIpbvrbMgQXkCUhpRSlGgVTegDaBZHQIA3qBun/DN1fZQoaAZoCWgPQwgebRyxFp1DQJSGlFKUaBVN6ANoFkdAgDsns9jgAXV9lChoBmgJaA9DCDj3V497VGFAlIaUUpRoFU3oA2gWR0CARmLG7z06dX2UKGgGaAloD0MIyqZc4d30YECUhpRSlGgVTegDaBZHQIBJMyWRigF1fZQoaAZoCWgPQwjbp+MxgylhQJSGlFKUaBVN6ANoFkdAgE/sPatcOnV9lChoBmgJaA9DCOHUB5J3kltAlIaUUpRoFU3oA2gWR0CAWqNMoMKDdX2UKGgGaAloD0MINLvurUgqYUCUhpRSlGgVTegDaBZHQIBblL39JjF1fZQoaAZoCWgPQwjP29jsSJ9BQJSGlFKUaBVNTwFoFkdAgIr3/o7muHV9lChoBmgJaA9DCIc0KnCyYmBAlIaUUpRoFU3oA2gWR0CAlHWxyGSIdX2UKGgGaAloD0MIFCNL5tgYYECUhpRSlGgVTegDaBZHQICVaqwQlKN1fZQoaAZoCWgPQwgDl8eakT5VQJSGlFKUaBVN6ANoFkdAgJsSeqaPS3V9lChoBmgJaA9DCOrOE8/ZElRAlIaUUpRoFU3oA2gWR0CAnqVeKKpDdX2UKGgGaAloD0MIAn/4+W8vYkCUhpRSlGgVTegDaBZHQICstSqEOAl1fZQoaAZoCWgPQwhKCFbVy6JiQJSGlFKUaBVN6ANoFkdAgK4fbj94vHV9lChoBmgJaA9DCCL+YUuP1lhAlIaUUpRoFU3oA2gWR0CAuwxsVLzxdX2UKGgGaAloD0MIH4MVp9pmZkCUhpRSlGgVTeoCaBZHQIC+eQfZElV1fZQoaAZoCWgPQwjttgvN9XBhQJSGlFKUaBVN6ANoFkdAgNDsySFGonV9lChoBmgJaA9DCH/7OnDOHWNAlIaUUpRoFU3oA2gWR0CA4BzoUzsQdX2UKGgGaAloD0MI3GPpQxcIYkCUhpRSlGgVTegDaBZHQIDwVWGRFJB1fZQoaAZoCWgPQwgNNJ9zt0BhQJSGlFKUaBVN6ANoFkdAgPONZ3cHnnV9lChoBmgJaA9DCGzM64hDmEhAlIaUUpRoFU3oA2gWR0CA+0S3b212dX2UKGgGaAloD0MIct9qnbh8W8CUhpRSlGgVTScBaBZHQID8sjRlYlp1fZQoaAZoCWgPQwgsfeiC+kJlQJSGlFKUaBVN6ANoFkdAgQcU+s5n13V9lChoBmgJaA9DCB3HD5XGG2NAlIaUUpRoFU3oA2gWR0CBCAf+0gKXdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d762d6f87e3c7334dbd0cff064be22d39f179e479f9eeda8a0426ed2918725d7
|
3 |
+
size 254667
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 114.31845553128565, "std_reward": 89.92483940966119, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T09:44:57.694113"}
|