kingabzpro commited on
Commit
d6987d0
1 Parent(s): c9a33fa

Baseline-First-Commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
Moonman-Lunar-Lander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36268340204a4ee48b64a5a3710de89d81370e3bc7790e04d1e6b74bcd55a2f7
3
+ size 144040
Moonman-Lunar-Lander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
Moonman-Lunar-Lander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa67a42a3b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa67a42a440>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa67a42a4d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa67a42a560>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa67a42a5f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa67a42a680>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa67a42a710>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa67a42a7a0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa67a42a830>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa67a42a8c0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa67a42a950>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa67a464f30>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652261307.0012295,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABc4TzyZgA/EcQhPiw5NL6dMzU8DZatOwAAAAAAAAAApoZ2Po8uHT166N68xssQPQPisD6XHLU7AACAPwAAAACTjg6+FPbXugAJuDtHis44Y8wxPIrTr7kAAIA/AACAP82FHT1zasQ+On2APt3nOL6v2/y7Ah7qPAAAAAAAAAAA2hzRPvBTWT/Vllg9qpVtvnPbWj2dCXW9AAAAAAAAAAD2LKU+QWrkvMo0WLuzv8K45FMXvp7+j7oAAIA/AACAP1101D58JhA9S3Z6uXOThLZEXp+6+WedOAAAgD8AAIA/mtAnPoxMCT4b9I88RDCJvga6br3j4SO9AAAAAAAAAACTRI2+Md1XP6KMKT152oS+1hqgvUJ3gzwAAAAAAAAAAE0LvT0fJbG5YGo+O1GgczZbI/I78xdkugAAgD8AAIA/TZCFvRRMkbpMbhu6bV0JtfFx3rhCODQ5AACAPwAAgD8zXqa8w+lgushUwjyOEmA6SAvFOpthOzsAAIA/AACAP2Zfy71c33260PCDuuQEBDV2Vx27Gz+WOQAAgD8AAIA/s1UFvYXzlrkn2Rg4PT2fthwuRzvz5yy3AACAPwAAgD/mk2k9FAyqunPl2bl/3Uu2QHnBOr2m+jgAAIA/AACAP40EoT2UlSc+JqdaPVxXVb4RwI+9klkCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwoh9AiijUkCUhpRSlIwBbJRN6AOMAXSUR0B7GbvG6wt8dX2UKGgGaAloD0MIEcMOY9LuUkCUhpRSlGgVTegDaBZHQHswMqBmPHV1fZQoaAZoCWgPQwhvLZPhePlgwJSGlFKUaBVNdAFoFkdAezXdv863iXV9lChoBmgJaA9DCASuK2aETVVAlIaUUpRoFU3oA2gWR0B7Nt8WsRxtdX2UKGgGaAloD0MIC+2cZoGEQsCUhpRSlGgVTUoBaBZHQHtAcvIwM6R1fZQoaAZoCWgPQwjhtOBF38RhQJSGlFKUaBVN6ANoFkdAe1WUBGQSz3V9lChoBmgJaA9DCInuWddoYVVAlIaUUpRoFU3oA2gWR0B7o1utOmBOdX2UKGgGaAloD0MIT5KumXxfWECUhpRSlGgVTegDaBZHQHvB/PkaMrF1fZQoaAZoCWgPQwjuBtFa0YxfQJSGlFKUaBVN6ANoFkdAe8iz8P4EfXV9lChoBmgJaA9DCGyTisba+VpAlIaUUpRoFU3oA2gWR0B74SETQE6ldX2UKGgGaAloD0MIgjtQpzykScCUhpRSlGgVS+poFkdAe/72HLzPKXV9lChoBmgJaA9DCCqNmNlnsWRAlIaUUpRoFU3oA2gWR0B8HE6XBxgidX2UKGgGaAloD0MIkBZnDHOWY0CUhpRSlGgVTegDaBZHQHwpLzbvgFZ1fZQoaAZoCWgPQwi++Q0TDb5RQJSGlFKUaBVN6ANoFkdAfCp5z5oGp3V9lChoBmgJaA9DCDBMpgpG7VJAlIaUUpRoFU3oA2gWR0B8OoOSW7e3dX2UKGgGaAloD0MICd0lcVZfXUCUhpRSlGgVTegDaBZHQHw8N9lVcUx1fZQoaAZoCWgPQwg+6q9XWH5WwJSGlFKUaBVNvAFoFkdAfD1bbUPQOXV9lChoBmgJaA9DCMwmwLD8KSpAlIaUUpRoFUvlaBZHQHxiUR8MNMJ1fZQoaAZoCWgPQwjzOuKQjTJkQJSGlFKUaBVN6ANoFkdAfGMpHI6sAHV9lChoBmgJaA9DCJM2VfdIfGFAlIaUUpRoFU3oA2gWR0B8Y3OD8LrpdX2UKGgGaAloD0MIwOrIkc6gLkCUhpRSlGgVS/doFkdAfGgtIClrM3V9lChoBmgJaA9DCHb6QV2kW1pAlIaUUpRoFU3oA2gWR0B8em44Ia99dX2UKGgGaAloD0MIomMHlbiSTkCUhpRSlGgVTegDaBZHQHyABun/DLt1fZQoaAZoCWgPQwipvvOLEsdXQJSGlFKUaBVN6ANoFkdAfIEI3irDInV9lChoBmgJaA9DCKneGtgqP15AlIaUUpRoFU3oA2gWR0B8ihvS+g14dX2UKGgGaAloD0MIesN95FbKaECUhpRSlGgVTYcBaBZHQHyfsm8dxQ11fZQoaAZoCWgPQwi1bK0vEuBSQJSGlFKUaBVN6ANoFkdAfKBH9WIXTHV9lChoBmgJaA9DCMajVMITf11AlIaUUpRoFU3oA2gWR0B87haFEiMYdX2UKGgGaAloD0MIO3MPCd+BQsCUhpRSlGgVS/loFkdAfSgJz1bqyHV9lChoBmgJaA9DCGHD0ytlbmlAlIaUUpRoFU2EAmgWR0B9K1awD/2kdX2UKGgGaAloD0MI/pjWpjG9ZECUhpRSlGgVTegDaBZHQH0vVrdnCfp1fZQoaAZoCWgPQwjfxJCcTPlWQJSGlFKUaBVN6ANoFkdAfU/j9GZuynV9lChoBmgJaA9DCHCZ02UxD1xAlIaUUpRoFU3oA2gWR0B9bcdeY2KmdX2UKGgGaAloD0MIJeZZSSt1acCUhpRSlGgVTewBaBZHQH1uKKk2xY91fZQoaAZoCWgPQwgujV94JZtZQJSGlFKUaBVN6ANoFkdAfZKwNLDhtXV9lChoBmgJaA9DCHyb/uxH92xAlIaUUpRoFU1uAWgWR0B9lBOk+HJtdX2UKGgGaAloD0MI5C7CFOXGV0CUhpRSlGgVTegDaBZHQH2+m9YfW+Z1fZQoaAZoCWgPQwgUJLa7B4dRQJSGlFKUaBVN6ANoFkdAfb+dY4hllXV9lChoBmgJaA9DCJTZIJOMeGBAlIaUUpRoFU3oA2gWR0B9v/FaSs8xdX2UKGgGaAloD0MI1owMchfdWkCUhpRSlGgVTegDaBZHQH3E1b7j1f51fZQoaAZoCWgPQwiJeVbSih5YQJSGlFKUaBVN6ANoFkdAfdVYUFjd6HV9lChoBmgJaA9DCIlDNpAu/FpAlIaUUpRoFU3oA2gWR0B92m2a2F37dX2UKGgGaAloD0MIaqD5nLv0VkCUhpRSlGgVTegDaBZHQH3bUcjqv/11fZQoaAZoCWgPQwiqDONuEKtkQJSGlFKUaBVNjgFoFkdAfdyQfIS13XV9lChoBmgJaA9DCFsjgnFwX1xAlIaUUpRoFU3oA2gWR0B94g7o0Q9SdX2UKGgGaAloD0MIWrdB7bc+N8CUhpRSlGgVTTwBaBZHQH3k22oegct1fZQoaAZoCWgPQwiTGARWDi3AP5SGlFKUaBVNPQFoFkdAfeXc2R7qp3V9lChoBmgJaA9DCAjlfRzN+TZAlIaUUpRoFUv6aBZHQH31GKEWZZ11fZQoaAZoCWgPQwgO2xZlNmBLQJSGlFKUaBVN6ANoFkdAffaOtW+49XV9lChoBmgJaA9DCHdM3ZVdiCRAlIaUUpRoFU0WAWgWR0B+Zg/FBIFvdX2UKGgGaAloD0MIQkKUL2gPScCUhpRSlGgVTToBaBZHQH5oHxvvSc91fZQoaAZoCWgPQwi5NlSM89FdQJSGlFKUaBVN6ANoFkdAfnPyMDOkcnV9lChoBmgJaA9DCEd0z7pGb05AlIaUUpRoFU3oA2gWR0B+enOiWVu8dX2UKGgGaAloD0MI4IRCBJzGaECUhpRSlGgVTfwBaBZHQH57fGhmGud1fZQoaAZoCWgPQwjC9/4G7QlYQJSGlFKUaBVN6ANoFkdAfpoTrmhdt3V9lChoBmgJaA9DCM9KWvENzFtAlIaUUpRoFU3oA2gWR0B+uBEH+qBFdX2UKGgGaAloD0MIdji6SncBS8CUhpRSlGgVTQYBaBZHQH7D9yxRl6J1fZQoaAZoCWgPQwi1xMpo5Lc+wJSGlFKUaBVL3WgWR0B/BtoQFs55dX2UKGgGaAloD0MIIhgHl46GW0CUhpRSlGgVTegDaBZHQH8MMrupjtp1fZQoaAZoCWgPQwgwLeqT3NdgQJSGlFKUaBVN6ANoFkdAfxIg7o0Q9XV9lChoBmgJaA9DCLR3RluV4l5AlIaUUpRoFU3oA2gWR0B/Jzqmj0tidX2UKGgGaAloD0MIPX/aqE59YkCUhpRSlGgVTegDaBZHQH8tVUMoc711fZQoaAZoCWgPQwhMVG8NbP1cQJSGlFKUaBVN6ANoFkdAfy5m78Nx2nV9lChoBmgJaA9DCO0Q/7Cl4VhAlIaUUpRoFU3oA2gWR0B/O0bedkJ8dX2UKGgGaAloD0MIomKcvwmJVECUhpRSlGgVTegDaBZHQH88sDGLk0d1fZQoaAZoCWgPQwjECrd8JOtXQJSGlFKUaBVN6ANoFkdAf0+V6/qPfnV9lChoBmgJaA9DCLQCQ1a3YWFAlIaUUpRoFU3oA2gWR0B/UT7wazeGdX2UKGgGaAloD0MIOV/svfjLV0CUhpRSlGgVTegDaBZHQH/EPhQ3xWl1fZQoaAZoCWgPQwj1ZP7RN/ZQQJSGlFKUaBVN6ANoFkdAf8YtUXHim3V9lChoBmgJaA9DCFzmdFnMRGVAlIaUUpRoFU3oA2gWR0B/0fjghr31dX2UKGgGaAloD0MIiujX1k97WECUhpRSlGgVTegDaBZHQH/Zt3bEgnt1fZQoaAZoCWgPQwhCz2bV5xdjQJSGlFKUaBVN6ANoFkdAf/hP+GXXy3V9lChoBmgJaA9DCPc96q/XZGpAlIaUUpRoFU0AAmgWR0B/+28BdUsGdX2UKGgGaAloD0MI6fLmcK14T0CUhpRSlGgVTegDaBZHQIALJYDDCP91fZQoaAZoCWgPQwixxAPKph5nQJSGlFKUaBVNxQJoFkdAgCOFqSHM2XV9lChoBmgJaA9DCP3YJD/iNlpAlIaUUpRoFU3oA2gWR0CANRAPd2xIdX2UKGgGaAloD0MIpbvrbMgQXkCUhpRSlGgVTegDaBZHQIA3qBun/DN1fZQoaAZoCWgPQwgebRyxFp1DQJSGlFKUaBVN6ANoFkdAgDsns9jgAXV9lChoBmgJaA9DCDj3V497VGFAlIaUUpRoFU3oA2gWR0CARmLG7z06dX2UKGgGaAloD0MIyqZc4d30YECUhpRSlGgVTegDaBZHQIBJMyWRigF1fZQoaAZoCWgPQwjbp+MxgylhQJSGlFKUaBVN6ANoFkdAgE/sPatcOnV9lChoBmgJaA9DCOHUB5J3kltAlIaUUpRoFU3oA2gWR0CAWqNMoMKDdX2UKGgGaAloD0MINLvurUgqYUCUhpRSlGgVTegDaBZHQIBblL39JjF1fZQoaAZoCWgPQwjP29jsSJ9BQJSGlFKUaBVNTwFoFkdAgIr3/o7muHV9lChoBmgJaA9DCIc0KnCyYmBAlIaUUpRoFU3oA2gWR0CAlHWxyGSIdX2UKGgGaAloD0MIFCNL5tgYYECUhpRSlGgVTegDaBZHQICVaqwQlKN1fZQoaAZoCWgPQwgDl8eakT5VQJSGlFKUaBVN6ANoFkdAgJsSeqaPS3V9lChoBmgJaA9DCOrOE8/ZElRAlIaUUpRoFU3oA2gWR0CAnqVeKKpDdX2UKGgGaAloD0MIAn/4+W8vYkCUhpRSlGgVTegDaBZHQICstSqEOAl1fZQoaAZoCWgPQwhKCFbVy6JiQJSGlFKUaBVN6ANoFkdAgK4fbj94vHV9lChoBmgJaA9DCCL+YUuP1lhAlIaUUpRoFU3oA2gWR0CAuwxsVLzxdX2UKGgGaAloD0MIH4MVp9pmZkCUhpRSlGgVTeoCaBZHQIC+eQfZElV1fZQoaAZoCWgPQwjttgvN9XBhQJSGlFKUaBVN6ANoFkdAgNDsySFGonV9lChoBmgJaA9DCH/7OnDOHWNAlIaUUpRoFU3oA2gWR0CA4BzoUzsQdX2UKGgGaAloD0MI3GPpQxcIYkCUhpRSlGgVTegDaBZHQIDwVWGRFJB1fZQoaAZoCWgPQwgNNJ9zt0BhQJSGlFKUaBVN6ANoFkdAgPONZ3cHnnV9lChoBmgJaA9DCGzM64hDmEhAlIaUUpRoFU3oA2gWR0CA+0S3b212dX2UKGgGaAloD0MIct9qnbh8W8CUhpRSlGgVTScBaBZHQID8sjRlYlp1fZQoaAZoCWgPQwgsfeiC+kJlQJSGlFKUaBVN6ANoFkdAgQcU+s5n13V9lChoBmgJaA9DCB3HD5XGG2NAlIaUUpRoFU3oA2gWR0CBCAf+0gKXdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
Moonman-Lunar-Lander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77093c06f16c3f6962883177c62491878bc6c646639b71f29810de7221698468
3
+ size 84829
Moonman-Lunar-Lander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85c785fcd93f0f48d27d033850218cc297c988c6b1d6179d61c0d1e42e96a820
3
+ size 43201
Moonman-Lunar-Lander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Moonman-Lunar-Lander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 114.32 +/- 89.92
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa67a42a3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa67a42a440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa67a42a4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa67a42a560>", "_build": "<function ActorCriticPolicy._build at 0x7fa67a42a5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa67a42a680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa67a42a710>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa67a42a7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa67a42a830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa67a42a8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa67a42a950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa67a464f30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652261307.0012295, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABc4TzyZgA/EcQhPiw5NL6dMzU8DZatOwAAAAAAAAAApoZ2Po8uHT166N68xssQPQPisD6XHLU7AACAPwAAAACTjg6+FPbXugAJuDtHis44Y8wxPIrTr7kAAIA/AACAP82FHT1zasQ+On2APt3nOL6v2/y7Ah7qPAAAAAAAAAAA2hzRPvBTWT/Vllg9qpVtvnPbWj2dCXW9AAAAAAAAAAD2LKU+QWrkvMo0WLuzv8K45FMXvp7+j7oAAIA/AACAP1101D58JhA9S3Z6uXOThLZEXp+6+WedOAAAgD8AAIA/mtAnPoxMCT4b9I88RDCJvga6br3j4SO9AAAAAAAAAACTRI2+Md1XP6KMKT152oS+1hqgvUJ3gzwAAAAAAAAAAE0LvT0fJbG5YGo+O1GgczZbI/I78xdkugAAgD8AAIA/TZCFvRRMkbpMbhu6bV0JtfFx3rhCODQ5AACAPwAAgD8zXqa8w+lgushUwjyOEmA6SAvFOpthOzsAAIA/AACAP2Zfy71c33260PCDuuQEBDV2Vx27Gz+WOQAAgD8AAIA/s1UFvYXzlrkn2Rg4PT2fthwuRzvz5yy3AACAPwAAgD/mk2k9FAyqunPl2bl/3Uu2QHnBOr2m+jgAAIA/AACAP40EoT2UlSc+JqdaPVxXVb4RwI+9klkCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwoh9AiijUkCUhpRSlIwBbJRN6AOMAXSUR0B7GbvG6wt8dX2UKGgGaAloD0MIEcMOY9LuUkCUhpRSlGgVTegDaBZHQHswMqBmPHV1fZQoaAZoCWgPQwhvLZPhePlgwJSGlFKUaBVNdAFoFkdAezXdv863iXV9lChoBmgJaA9DCASuK2aETVVAlIaUUpRoFU3oA2gWR0B7Nt8WsRxtdX2UKGgGaAloD0MIC+2cZoGEQsCUhpRSlGgVTUoBaBZHQHtAcvIwM6R1fZQoaAZoCWgPQwjhtOBF38RhQJSGlFKUaBVN6ANoFkdAe1WUBGQSz3V9lChoBmgJaA9DCInuWddoYVVAlIaUUpRoFU3oA2gWR0B7o1utOmBOdX2UKGgGaAloD0MIT5KumXxfWECUhpRSlGgVTegDaBZHQHvB/PkaMrF1fZQoaAZoCWgPQwjuBtFa0YxfQJSGlFKUaBVN6ANoFkdAe8iz8P4EfXV9lChoBmgJaA9DCGyTisba+VpAlIaUUpRoFU3oA2gWR0B74SETQE6ldX2UKGgGaAloD0MIgjtQpzykScCUhpRSlGgVS+poFkdAe/72HLzPKXV9lChoBmgJaA9DCCqNmNlnsWRAlIaUUpRoFU3oA2gWR0B8HE6XBxgidX2UKGgGaAloD0MIkBZnDHOWY0CUhpRSlGgVTegDaBZHQHwpLzbvgFZ1fZQoaAZoCWgPQwi++Q0TDb5RQJSGlFKUaBVN6ANoFkdAfCp5z5oGp3V9lChoBmgJaA9DCDBMpgpG7VJAlIaUUpRoFU3oA2gWR0B8OoOSW7e3dX2UKGgGaAloD0MICd0lcVZfXUCUhpRSlGgVTegDaBZHQHw8N9lVcUx1fZQoaAZoCWgPQwg+6q9XWH5WwJSGlFKUaBVNvAFoFkdAfD1bbUPQOXV9lChoBmgJaA9DCMwmwLD8KSpAlIaUUpRoFUvlaBZHQHxiUR8MNMJ1fZQoaAZoCWgPQwjzOuKQjTJkQJSGlFKUaBVN6ANoFkdAfGMpHI6sAHV9lChoBmgJaA9DCJM2VfdIfGFAlIaUUpRoFU3oA2gWR0B8Y3OD8LrpdX2UKGgGaAloD0MIwOrIkc6gLkCUhpRSlGgVS/doFkdAfGgtIClrM3V9lChoBmgJaA9DCHb6QV2kW1pAlIaUUpRoFU3oA2gWR0B8em44Ia99dX2UKGgGaAloD0MIomMHlbiSTkCUhpRSlGgVTegDaBZHQHyABun/DLt1fZQoaAZoCWgPQwipvvOLEsdXQJSGlFKUaBVN6ANoFkdAfIEI3irDInV9lChoBmgJaA9DCKneGtgqP15AlIaUUpRoFU3oA2gWR0B8ihvS+g14dX2UKGgGaAloD0MIesN95FbKaECUhpRSlGgVTYcBaBZHQHyfsm8dxQ11fZQoaAZoCWgPQwi1bK0vEuBSQJSGlFKUaBVN6ANoFkdAfKBH9WIXTHV9lChoBmgJaA9DCMajVMITf11AlIaUUpRoFU3oA2gWR0B87haFEiMYdX2UKGgGaAloD0MIO3MPCd+BQsCUhpRSlGgVS/loFkdAfSgJz1bqyHV9lChoBmgJaA9DCGHD0ytlbmlAlIaUUpRoFU2EAmgWR0B9K1awD/2kdX2UKGgGaAloD0MI/pjWpjG9ZECUhpRSlGgVTegDaBZHQH0vVrdnCfp1fZQoaAZoCWgPQwjfxJCcTPlWQJSGlFKUaBVN6ANoFkdAfU/j9GZuynV9lChoBmgJaA9DCHCZ02UxD1xAlIaUUpRoFU3oA2gWR0B9bcdeY2KmdX2UKGgGaAloD0MIJeZZSSt1acCUhpRSlGgVTewBaBZHQH1uKKk2xY91fZQoaAZoCWgPQwgujV94JZtZQJSGlFKUaBVN6ANoFkdAfZKwNLDhtXV9lChoBmgJaA9DCHyb/uxH92xAlIaUUpRoFU1uAWgWR0B9lBOk+HJtdX2UKGgGaAloD0MI5C7CFOXGV0CUhpRSlGgVTegDaBZHQH2+m9YfW+Z1fZQoaAZoCWgPQwgUJLa7B4dRQJSGlFKUaBVN6ANoFkdAfb+dY4hllXV9lChoBmgJaA9DCJTZIJOMeGBAlIaUUpRoFU3oA2gWR0B9v/FaSs8xdX2UKGgGaAloD0MI1owMchfdWkCUhpRSlGgVTegDaBZHQH3E1b7j1f51fZQoaAZoCWgPQwiJeVbSih5YQJSGlFKUaBVN6ANoFkdAfdVYUFjd6HV9lChoBmgJaA9DCIlDNpAu/FpAlIaUUpRoFU3oA2gWR0B92m2a2F37dX2UKGgGaAloD0MIaqD5nLv0VkCUhpRSlGgVTegDaBZHQH3bUcjqv/11fZQoaAZoCWgPQwiqDONuEKtkQJSGlFKUaBVNjgFoFkdAfdyQfIS13XV9lChoBmgJaA9DCFsjgnFwX1xAlIaUUpRoFU3oA2gWR0B94g7o0Q9SdX2UKGgGaAloD0MIWrdB7bc+N8CUhpRSlGgVTTwBaBZHQH3k22oegct1fZQoaAZoCWgPQwiTGARWDi3AP5SGlFKUaBVNPQFoFkdAfeXc2R7qp3V9lChoBmgJaA9DCAjlfRzN+TZAlIaUUpRoFUv6aBZHQH31GKEWZZ11fZQoaAZoCWgPQwgO2xZlNmBLQJSGlFKUaBVN6ANoFkdAffaOtW+49XV9lChoBmgJaA9DCHdM3ZVdiCRAlIaUUpRoFU0WAWgWR0B+Zg/FBIFvdX2UKGgGaAloD0MIQkKUL2gPScCUhpRSlGgVTToBaBZHQH5oHxvvSc91fZQoaAZoCWgPQwi5NlSM89FdQJSGlFKUaBVN6ANoFkdAfnPyMDOkcnV9lChoBmgJaA9DCEd0z7pGb05AlIaUUpRoFU3oA2gWR0B+enOiWVu8dX2UKGgGaAloD0MI4IRCBJzGaECUhpRSlGgVTfwBaBZHQH57fGhmGud1fZQoaAZoCWgPQwjC9/4G7QlYQJSGlFKUaBVN6ANoFkdAfpoTrmhdt3V9lChoBmgJaA9DCM9KWvENzFtAlIaUUpRoFU3oA2gWR0B+uBEH+qBFdX2UKGgGaAloD0MIdji6SncBS8CUhpRSlGgVTQYBaBZHQH7D9yxRl6J1fZQoaAZoCWgPQwi1xMpo5Lc+wJSGlFKUaBVL3WgWR0B/BtoQFs55dX2UKGgGaAloD0MIIhgHl46GW0CUhpRSlGgVTegDaBZHQH8MMrupjtp1fZQoaAZoCWgPQwgwLeqT3NdgQJSGlFKUaBVN6ANoFkdAfxIg7o0Q9XV9lChoBmgJaA9DCLR3RluV4l5AlIaUUpRoFU3oA2gWR0B/Jzqmj0tidX2UKGgGaAloD0MIPX/aqE59YkCUhpRSlGgVTegDaBZHQH8tVUMoc711fZQoaAZoCWgPQwhMVG8NbP1cQJSGlFKUaBVN6ANoFkdAfy5m78Nx2nV9lChoBmgJaA9DCO0Q/7Cl4VhAlIaUUpRoFU3oA2gWR0B/O0bedkJ8dX2UKGgGaAloD0MIomKcvwmJVECUhpRSlGgVTegDaBZHQH88sDGLk0d1fZQoaAZoCWgPQwjECrd8JOtXQJSGlFKUaBVN6ANoFkdAf0+V6/qPfnV9lChoBmgJaA9DCLQCQ1a3YWFAlIaUUpRoFU3oA2gWR0B/UT7wazeGdX2UKGgGaAloD0MIOV/svfjLV0CUhpRSlGgVTegDaBZHQH/EPhQ3xWl1fZQoaAZoCWgPQwj1ZP7RN/ZQQJSGlFKUaBVN6ANoFkdAf8YtUXHim3V9lChoBmgJaA9DCFzmdFnMRGVAlIaUUpRoFU3oA2gWR0B/0fjghr31dX2UKGgGaAloD0MIiujX1k97WECUhpRSlGgVTegDaBZHQH/Zt3bEgnt1fZQoaAZoCWgPQwhCz2bV5xdjQJSGlFKUaBVN6ANoFkdAf/hP+GXXy3V9lChoBmgJaA9DCPc96q/XZGpAlIaUUpRoFU0AAmgWR0B/+28BdUsGdX2UKGgGaAloD0MI6fLmcK14T0CUhpRSlGgVTegDaBZHQIALJYDDCP91fZQoaAZoCWgPQwixxAPKph5nQJSGlFKUaBVNxQJoFkdAgCOFqSHM2XV9lChoBmgJaA9DCP3YJD/iNlpAlIaUUpRoFU3oA2gWR0CANRAPd2xIdX2UKGgGaAloD0MIpbvrbMgQXkCUhpRSlGgVTegDaBZHQIA3qBun/DN1fZQoaAZoCWgPQwgebRyxFp1DQJSGlFKUaBVN6ANoFkdAgDsns9jgAXV9lChoBmgJaA9DCDj3V497VGFAlIaUUpRoFU3oA2gWR0CARmLG7z06dX2UKGgGaAloD0MIyqZc4d30YECUhpRSlGgVTegDaBZHQIBJMyWRigF1fZQoaAZoCWgPQwjbp+MxgylhQJSGlFKUaBVN6ANoFkdAgE/sPatcOnV9lChoBmgJaA9DCOHUB5J3kltAlIaUUpRoFU3oA2gWR0CAWqNMoMKDdX2UKGgGaAloD0MINLvurUgqYUCUhpRSlGgVTegDaBZHQIBblL39JjF1fZQoaAZoCWgPQwjP29jsSJ9BQJSGlFKUaBVNTwFoFkdAgIr3/o7muHV9lChoBmgJaA9DCIc0KnCyYmBAlIaUUpRoFU3oA2gWR0CAlHWxyGSIdX2UKGgGaAloD0MIFCNL5tgYYECUhpRSlGgVTegDaBZHQICVaqwQlKN1fZQoaAZoCWgPQwgDl8eakT5VQJSGlFKUaBVN6ANoFkdAgJsSeqaPS3V9lChoBmgJaA9DCOrOE8/ZElRAlIaUUpRoFU3oA2gWR0CAnqVeKKpDdX2UKGgGaAloD0MIAn/4+W8vYkCUhpRSlGgVTegDaBZHQICstSqEOAl1fZQoaAZoCWgPQwhKCFbVy6JiQJSGlFKUaBVN6ANoFkdAgK4fbj94vHV9lChoBmgJaA9DCCL+YUuP1lhAlIaUUpRoFU3oA2gWR0CAuwxsVLzxdX2UKGgGaAloD0MIH4MVp9pmZkCUhpRSlGgVTeoCaBZHQIC+eQfZElV1fZQoaAZoCWgPQwjttgvN9XBhQJSGlFKUaBVN6ANoFkdAgNDsySFGonV9lChoBmgJaA9DCH/7OnDOHWNAlIaUUpRoFU3oA2gWR0CA4BzoUzsQdX2UKGgGaAloD0MI3GPpQxcIYkCUhpRSlGgVTegDaBZHQIDwVWGRFJB1fZQoaAZoCWgPQwgNNJ9zt0BhQJSGlFKUaBVN6ANoFkdAgPONZ3cHnnV9lChoBmgJaA9DCGzM64hDmEhAlIaUUpRoFU3oA2gWR0CA+0S3b212dX2UKGgGaAloD0MIct9qnbh8W8CUhpRSlGgVTScBaBZHQID8sjRlYlp1fZQoaAZoCWgPQwgsfeiC+kJlQJSGlFKUaBVN6ANoFkdAgQcU+s5n13V9lChoBmgJaA9DCB3HD5XGG2NAlIaUUpRoFU3oA2gWR0CBCAf+0gKXdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d762d6f87e3c7334dbd0cff064be22d39f179e479f9eeda8a0426ed2918725d7
3
+ size 254667
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 114.31845553128565, "std_reward": 89.92483940966119, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T09:44:57.694113"}