kingabzpro's picture
Hparams-optimized-6
6c65102
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a68780320>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a687803b0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a68780440>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a687804d0>",
"_build": "<function ActorCriticPolicy._build at 0x7f9a68780560>",
"forward": "<function ActorCriticPolicy.forward at 0x7f9a687805f0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a68780680>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f9a68780710>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a687807a0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a68780830>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a687808c0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f9a687ce510>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 64,
"num_timesteps": 1048576,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652329003.698861,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAM0YxLx7vJu6rnYCu3AtnLZR/wU74+wKNgAAgD8AAIA/ANqwPBSApbo7qxe6P2TINYRYR7oCDi45AACAPwAAgD+AVJ+9hTafuwjnaT6UB0i+w+eDPIBrf78AAAAAAACAP03AVj3DMT269cLXO+99yTzA0I47sXisvQAAgD8AAIA/c7uAPVyzDbruYwc8NwVPN+eqiDvcnUQ2AACAPwAAgD/NPJ47SBmJujLwBrlrG+20mXQdu1FjGTgAAIA/AACAP42wNb6PQxK8mxYcvaqHLj1KLYg9pPbCvAAAgD8AAAAAM2fuO9cTGrnT+v87i3YHvLumX7qooO48AACAPwAAAAAAKmO8KcAauvifADrMhUU4KHF2OmH3F7kAAIA/AACAP7PsGr0sAbc/PlkDv0pGIz15vag7+5TIvQAAAAAAAAAAzdoYvFx/GrqrGnc3HfeoMr3qozvqu5G2AACAPwAAgD9zMoq9UiO5P59RxL5dWvK99FKdvX1q/70AAAAAAAAAAJpm/Dyj+/8++wLyPadyq75QMlc92qJIPAAAAAAAAAAAzcmUvGkELbyoAFq4VFe+PGzXl726DZs9AACAPwAAgD+aF5++RDf8PsaJsT0wr6O+pIIJvtEdBT0AAAAAAAAAALO7q71IfYi6swqHu74knrafpus6sIOZOgAAgD8AAIA/zWuVPfZQRrphr7E7oGpqOHFBL7uGhFq4AACAPwAAgD+N+dU9KSh2um40z7u3ELc3Iu3NOil6ArcAAIA/AACAPwB5ID0f5fO5hpYqO26liLY9mqW7XjlHugAAgD8AAIA/89qNPY+2d7piQqm7N3wXOL873Lr22k+3AACAPwAAgD8zxzO8e0KOusZRvDr82HO1y8s7u0iY1bkAAIA/AACAPwCt3byu9aW6GK5Tu3qdF7fTctk6zW9wOgAAgD8AAIA/Zvi4vCmsWjnGC/w7Ph3EPNvxnLm+7+c7AACAPwAAgD/Nn7O8FBKquo8cwLupz7s3bssEOzthErcAAIA/AACAP+b4pz1IAZU/jsadPv6D775W5wU+MiF9PQAAAAAAAAAA7ThqPhxAOj4Oiq6+UsLKvkNhRD4d1k++AAAAAAAAAACaQo29T81FPQ9DKj2WW1K++pKAvXCtbj0AAAAAAAAAAAAyqLzhEKe6LlO5ubxn2bVpOCU4/oDTOAAAgD8AAIA/ABYoPfZ4V7ova6A68EyUuWAxFbtFWai5AACAPwAAgD/N9I487Nn0uVyhozgc5ny2AEgjOODLdrUAAIA/AACAP5qbqryPakW6zkG4OiBbCTaKSwM74jDRuQAAgD8AAIA/zWWSPa65h7r7bFC7r1OAOHPfY7toILA4AACAPwAAgD9zmKY9Kcg8us673bqRPoS1yBOluqhv+jkAAIA/AACAP+ZSg70paDy617ZMOqLaUTWcd4w5QNhvuQAAgD8AAIA/ZlSsvfYgN7risc67eUpkONqhZzvyHF45AACAPwAAgD+AcF49SBOPujqtnbsSyqo2l/XEurSHF7YAAIA/AACAPwCYF7uWS64/G014vCVYtr7voUe8pURqvQAAAAAAAAAAzbGfPHi18z1guu28fpuVvlgHd7tP+ys8AAAAAAAAAADN7Aq8n2bgu5LZzzsH/Fc89+YtPQrUOL0AAIA/AACAP7NqKb24cui7/nS6vITvjTw0PDK9a2NwPQAAgD8AAIA/M26CPI82N7q2VpA6mXwwNgVrlrv67qq5AACAPwAAgD8z+3O9e3S5uJhHEbzwKOe43F7Ruq3iVzgAAIA/AACAP5bUkT4xxNI+1ndMvvLC1r4kZ6I+/pSNvgAAAAAAAAAAmu2VO/0Taj9KJiU8CwkEv/GjLb0/Joq9AAAAAAAAAAAbZJa+MWs/PzUUaj2pcc6+c35xvs07ST4AAAAAAAAAADPx+jx70pq6UmohvA30Uby7SLG7mlg4vQAAgD8AAIA/mjirPIULwjh2FeG7wV7jNUCpWTtwyFW1AACAPwAAgD8A6Bi9e3qAui1t+7aAxe6wTMakukhPFDYAAIA/AACAP8256zwKd0u50gcwOTs+wzSGVaE7Ku9RuAAAgD8AAIA/WmhqPmJhcT/SxWA+gx3HvpYgij5FjOC8AAAAAAAAAAAz5WE8w5lKuvk+rrlTM422WxqNurpvxzgAAIA/AACAP2YI7j3vR0A9w4aJvqdXvL6114K+VkQYvQAAAAAAAAAAgEZbvcNZdbqVz0g7Gg5NODn7wzqCSPC5AACAPwAAgD8zSwW8SB+GuvWsMLu2v2s4YM7MOtKZvjkAAIA/AACAP82v3rzskd+5BO0oO94FR7Tpj6c7FUtEugAAgD8AAIA/gAKOPacdQz85bQI9OI0AvwfxhD31cTW9AAAAAAAAAACz5qq9w0ppP6d0Ir5s9Re/Nfz4OrqgED0AAAAAAAAAAAA2pbwU3IK6FhQuOivXezZ/NxQ6zg1GuQAAgD8AAIA/5qhqPY+WCrrqcay6I0IPNnlIGjr2TMg5AACAPwAAgD8zJcI9XO8kOVXr8L2fV9085jsxvO4Zwr0AAAAAAACAP6bHiD2PogA55r4sPJYuL7t8T247PoIZvAAAAAAAAIA/AMjIvI9OYbrwryi7Gnceuct3sLpYu+s5AACAPwAAgD9mWYE9lpqbP/VEqD7iLQa/A4IwPTKm8T0AAAAAAAAAAM2MtDx7TIe69nvRuCVpsDWZHgW7qL/sNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.04857599999999995,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/tZOlASbY0CUhpRSlIwBbJRN6AOMAXSUR0CeQtVCXyAhdX2UKGgGaAloD0MIL2tigS/8ZECUhpRSlGgVTegDaBZHQJ5GyWSlnAZ1fZQoaAZoCWgPQwj6Jk2DouVfQJSGlFKUaBVN6ANoFkdAnkelHvttynV9lChoBmgJaA9DCJEKYwvB12RAlIaUUpRoFU3oA2gWR0CeSC2KEWZadX2UKGgGaAloD0MIrtaJy/HsW0CUhpRSlGgVTegDaBZHQJ5MxiuuA7R1fZQoaAZoCWgPQwiy17s/3hVWQJSGlFKUaBVN6ANoFkdAnlA+iBXjl3V9lChoBmgJaA9DCIBh+fNt3UdAlIaUUpRoFUt3aBZHQJ5QsiOearp1fZQoaAZoCWgPQwgRc0nV9ktmQJSGlFKUaBVN6ANoFkdAnlHxz/6wdXV9lChoBmgJaA9DCDJWm/9X82ZAlIaUUpRoFU3oA2gWR0CeVFS3b212dX2UKGgGaAloD0MIyD8ziI+YYkCUhpRSlGgVTegDaBZHQJ5ZXxd6cAl1fZQoaAZoCWgPQwg2zqYjgE1jQJSGlFKUaBVN6ANoFkdAnl6Z48lolHV9lChoBmgJaA9DCPePhegQ8F5AlIaUUpRoFU3oA2gWR0CeYW79ycTbdX2UKGgGaAloD0MIL4UHza7BZUCUhpRSlGgVTegDaBZHQJ5i6EpRXOp1fZQoaAZoCWgPQwi9bhEY69BjQJSGlFKUaBVN6ANoFkdAnmUgWN3np3V9lChoBmgJaA9DCGOARBMoKWBAlIaUUpRoFU3oA2gWR0CeZkGAkLQYdX2UKGgGaAloD0MIPZl/9M2FYECUhpRSlGgVTegDaBZHQJ5mSXmeUY91fZQoaAZoCWgPQwhTPC6qRfJjQJSGlFKUaBVN6ANoFkdAnmyGxdIGyHV9lChoBmgJaA9DCAmmmlnL0GJAlIaUUpRoFU3oA2gWR0CebL+85CF9dX2UKGgGaAloD0MIKpDZWfRhZUCUhpRSlGgVTegDaBZHQJ5u+WMS9M91fZQoaAZoCWgPQwj6gEBn0p5EQJSGlFKUaBVLkWgWR0CeciqdYnv2dX2UKGgGaAloD0MIiXssfeh2SkCUhpRSlGgVS8FoFkdAn9foTbnHN3V9lChoBmgJaA9DCDJzgcvjLGJAlIaUUpRoFU3oA2gWR0Cf2haCtihGdX2UKGgGaAloD0MIaAkyAiprYECUhpRSlGgVTegDaBZHQJ/aJz90ihZ1fZQoaAZoCWgPQwhbmlshrL1cQJSGlFKUaBVN6ANoFkdAn9/2Hck+o3V9lChoBmgJaA9DCNnNjH40WGRAlIaUUpRoFU3oA2gWR0Cf4MhB7eEadX2UKGgGaAloD0MIipRm8zjmQECUhpRSlGgVS6RoFkdAn+rwHeJpFnV9lChoBmgJaA9DCIMZU7BGrGBAlIaUUpRoFU3oA2gWR0Cf7vTVUdaMdX2UKGgGaAloD0MIpFGBk23wXECUhpRSlGgVTegDaBZHQJ/y3Egntv51fZQoaAZoCWgPQwikVS3pKKlhQJSGlFKUaBVN6ANoFkdAn/NkeZG8VnV9lChoBmgJaA9DCC1A22rW31xAlIaUUpRoFU3oA2gWR0Cf9Db9If8udX2UKGgGaAloD0MIxQJf0a3uXECUhpRSlGgVTegDaBZHQJ/1LMaCL/F1fZQoaAZoCWgPQwjsTKHzmuJmQJSGlFKUaBVN6ANoFkdAn/c+rMkhR3V9lChoBmgJaA9DCATkS6hg52BAlIaUUpRoFU3oA2gWR0Cf+3UH6dlNdX2UKGgGaAloD0MIavmBq7yLY0CUhpRSlGgVTegDaBZHQJ/8L2ugYgt1fZQoaAZoCWgPQwiMhLacS4ZhQJSGlFKUaBVN6ANoFkdAn/1FeOXE63V9lChoBmgJaA9DCFZETfT5GWJAlIaUUpRoFU3oA2gWR0CgAW1y/9HddX2UKGgGaAloD0MIbVSnA1nsY0CUhpRSlGgVTegDaBZHQKABy0P6KtR1fZQoaAZoCWgPQwg7GRwlr05gQJSGlFKUaBVN6ANoFkdAoALxOUMXrXV9lChoBmgJaA9DCACquHGLL2VAlIaUUpRoFU3oA2gWR0CgBEc2zfJndX2UKGgGaAloD0MIi/87okJKUECUhpRSlGgVS7ZoFkdAoASuzKLbYnV9lChoBmgJaA9DCIV7Zd6qRVtAlIaUUpRoFU3oA2gWR0CgBQE12q1gdX2UKGgGaAloD0MIE/JBz2b+YECUhpRSlGgVTegDaBZHQKAFmmWt2cJ1fZQoaAZoCWgPQwh6ppcYSxlmQJSGlFKUaBVN6ANoFkdAoAWdugpSaXV9lChoBmgJaA9DCEKZRpMLN2JAlIaUUpRoFU3oA2gWR0CgBaInrpqzdX2UKGgGaAloD0MIWW3+X3XJYkCUhpRSlGgVTegDaBZHQKAGZLdvbXZ1fZQoaAZoCWgPQwifyf55GmtnQJSGlFKUaBVN6ANoFkdAoAeMaKk2xnV9lChoBmgJaA9DCKqaIOq+gmVAlIaUUpRoFU3oA2gWR0CgDHZZr56/dX2UKGgGaAloD0MInuv7cBDcYUCUhpRSlGgVTegDaBZHQKARF0pVjqh1fZQoaAZoCWgPQwh6yJQPQUdcQJSGlFKUaBVN6ANoFkdAoBG7wQUYbnV9lChoBmgJaA9DCM3pspjYN1pAlIaUUpRoFU3oA2gWR0CgEsJ5u63BdX2UKGgGaAloD0MI4xx1dNweZ0CUhpRSlGgVTegDaBZHQKAT90ulGgB1fZQoaAZoCWgPQwiastMP6ilSQJSGlFKUaBVLnGgWR0CgFSyKWLP2dX2UKGgGaAloD0MIt+171F8hQ0CUhpRSlGgVS51oFkdAoBVK2Yv38HV9lChoBmgJaA9DCBgmUwWjl11AlIaUUpRoFU3oA2gWR0CgFbK3NLUTdX2UKGgGaAloD0MIbeF5qdiIE8CUhpRSlGgVS6xoFkdAoBY25lOGkHV9lChoBmgJaA9DCMFXdOu1HWZAlIaUUpRoFU3oA2gWR0CgF2xubZvldX2UKGgGaAloD0MIPbt868OHW0CUhpRSlGgVTegDaBZHQKAXpGo73f11fZQoaAZoCWgPQwhtHLEWn7xQQJSGlFKUaBVLpmgWR0CgGDlQdjoZdX2UKGgGaAloD0MIJo3ROqpgSkCUhpRSlGgVS8loFkdAoBhy/0ulGnV9lChoBmgJaA9DCBhgH5269mBAlIaUUpRoFU3oA2gWR0CgGV7GFSKndX2UKGgGaAloD0MIlnuBWaGMXUCUhpRSlGgVTegDaBZHQKAZ3MNc4YJ1fZQoaAZoCWgPQwhfQgWHF6BjQJSGlFKUaBVN6ANoFkdAoBn1ZxJd0XV9lChoBmgJaA9DCCKLNPEOxWNAlIaUUpRoFU3oA2gWR0CgIBDV6NVBdX2UKGgGaAloD0MIZ341Bwi/XUCUhpRSlGgVTegDaBZHQKAhvdld1Md1fZQoaAZoCWgPQwj+1eO+VQNoQJSGlFKUaBVN6ANoFkdAoCTXwRXfZXV9lChoBmgJaA9DCI6TwrxHKWZAlIaUUpRoFU3oA2gWR0CgJxRk3CKrdX2UKGgGaAloD0MI4PJYMzLEX0CUhpRSlGgVTegDaBZHQKAnL6X0Gu91fZQoaAZoCWgPQwjH2t/ZHg9OQJSGlFKUaBVLnmgWR0CgKIyUcGTtdX2UKGgGaAloD0MIiQj/ImjdYECUhpRSlGgVTegDaBZHQKApDuy/sVt1fZQoaAZoCWgPQwj6mA8IdHBEQJSGlFKUaBVLnGgWR0CgKcCQ1aW5dX2UKGgGaAloD0MINwAbECEkY0CUhpRSlGgVTegDaBZHQKAp9AE+xGF1fZQoaAZoCWgPQwj3x3vVynZCQJSGlFKUaBVLpWgWR0CgKsHn+yZ8dX2UKGgGaAloD0MIKV/QQgLUYECUhpRSlGgVTegDaBZHQKAw2YiPhhp1fZQoaAZoCWgPQwiFQC5x5MVfQJSGlFKUaBVN6ANoFkdAoDUosmOU+3V9lChoBmgJaA9DCMRfkzXqrlFAlIaUUpRoFUuoaBZHQKA6wju8brF1fZQoaAZoCWgPQwhBnl2+9YtkQJSGlFKUaBVN6ANoFkdAoD7HechC+nV9lChoBmgJaA9DCDOID+x4ZWNAlIaUUpRoFU3oA2gWR0CgP5JWeYlZdX2UKGgGaAloD0MIkUYFTjYLY0CUhpRSlGgVTegDaBZHQKBAG/KyOaR1fZQoaAZoCWgPQwgxB0FHq7JiQJSGlFKUaBVN6ANoFkdAoEJQ+pwS8XV9lChoBmgJaA9DCKcFL/qKQGBAlIaUUpRoFU3oA2gWR0CgQo5TqB3BdX2UKGgGaAloD0MIW+832nGrY0CUhpRSlGgVTegDaBZHQKBEs/A0sOJ1fZQoaAZoCWgPQwj0piIVRkxgQJSGlFKUaBVN6ANoFkdAoEZStcObzHV9lChoBmgJaA9DCN47akyIglRAlIaUUpRoFUuaaBZHQKBG+2vStvJ1fZQoaAZoCWgPQwi5T44CRDNeQJSGlFKUaBVN6ANoFkdAoEcgO8TSLXV9lChoBmgJaA9DCPdWJCYowmFAlIaUUpRoFU3oA2gWR0CgSD9IoVmBdX2UKGgGaAloD0MIWJI81/cpLUCUhpRSlGgVS4BoFkdAoEmddX1an3V9lChoBmgJaA9DCLsKKT8plWBAlIaUUpRoFU3oA2gWR0CgSpaqbSZ0dX2UKGgGaAloD0MIIsfWM4QAZECUhpRSlGgVTegDaBZHQKBM/HRTjvN1fZQoaAZoCWgPQwj3HcNjPwJeQJSGlFKUaBVN6ANoFkdAoE5NWn0kGHV9lChoBmgJaA9DCKsINxnVe2NAlIaUUpRoFU3oA2gWR0CgT/3kxREXdX2UKGgGaAloD0MIuM6/XXZjYUCUhpRSlGgVTegDaBZHQKBQg7muDBd1fZQoaAZoCWgPQwiw479AENxgQJSGlFKUaBVN6ANoFkdAoFCHU4JeFHV9lChoBmgJaA9DCCkJibQNq2RAlIaUUpRoFU3oA2gWR0CgU1+kHlfadX2UKGgGaAloD0MINA9gkV+hY0CUhpRSlGgVTegDaBZHQKBTea4MF2V1fZQoaAZoCWgPQwgnM95WevRlQJSGlFKUaBVN6ANoFkdAoFSCT+vQnnV9lChoBmgJaA9DCDMyyF2El2ZAlIaUUpRoFU3oA2gWR0CgVf0I9kjHdX2UKGgGaAloD0MI+mAZG7rNQkCUhpRSlGgVS9BoFkdAoFa5QizLOnV9lChoBmgJaA9DCIf9nlgnXmFAlIaUUpRoFU3oA2gWR0CgVsqjafz0dX2UKGgGaAloD0MIZi0FpH2ZZECUhpRSlGgVTegDaBZHQKBXzX+2mYV1fZQoaAZoCWgPQwjSViWR/YpkQJSGlFKUaBVN6ANoFkdAoFfT+5vtMXVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 160,
"n_steps": 1024,
"gamma": 0.997,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 32,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}