fake-news-detector-LSTM-GloVe / inference_main.py
kimic's picture
Initial commit for LSTM with GloVe embeddings
6f9bfc0
raw
history blame
3.2 kB
import torch
import pandas as pd
from preprocessing import (
preprocess_text,
load_tokenizer,
prepare_data,
load_glove_embeddings,
)
from data_loader import create_data_loader
from inference import load_model, evaluate_model
from sklearn.metrics import confusion_matrix
import os
version = 2
def run_evaluation(model_path, tokenizer_path, device):
cleaned_path = f"./output/version_{version}/cleaned_inference_data_{version}.csv"
# Load data
if os.path.exists(cleaned_path):
df = pd.read_csv(cleaned_path)
df.dropna(inplace=True)
print("Cleaned data found.")
else:
print("No cleaned data found. Cleaning data now...")
df = pd.read_csv("./data_3/news_articles.csv")
df.drop(
columns=[
"author",
"published",
"site_url",
"main_img_url",
"type",
"text_without_stopwords",
"title_without_stopwords",
"hasImage",
],
inplace=True,
)
# Map Real to 1 and Fake to 0
df["label"] = df["label"].map({"Real": 1, "Fake": 0})
df = df[df["label"].isin([1, 0])]
# Drop rows where the language is not 'english'
df = df[df["language"] == "english"]
df.drop(columns=["language"], inplace=True)
# Convert "no title" to empty string
df["title"] = df["title"].apply(lambda x: "" if x == "no title" else x)
df.dropna(inplace=True)
df["title"] = df["title"].apply(preprocess_text)
df["text"] = df["text"].apply(preprocess_text)
df.to_csv(cleaned_path, index=False)
df.dropna(inplace=True)
print("Cleaned data saved.")
labels = df["label"].values
# Load tokenizer
tokenizer = load_tokenizer(tokenizer_path)
embedding_matrix = load_glove_embeddings(
"./GloVe/glove.6B.300d.txt", tokenizer.word_index, embedding_dim=300
)
model = load_model(model_path, embedding_matrix)
model.to(device)
# Prepare data
titles = prepare_data(df["title"], tokenizer)
texts = prepare_data(df["text"], tokenizer)
# Create DataLoader
data_loader = create_data_loader(titles, texts, batch_size=32, shuffle=False)
# Evaluate
accuracy, f1, auc_roc, y_true, y_pred = evaluate_model(
model, data_loader, device, labels
)
# Generate and save confusion matrix
cm = confusion_matrix(y_true, y_pred)
cm_df = pd.DataFrame(cm)
cm_filename = f"./output/version_{version}/confusion_matrix_inference_{version}.csv"
cm_df.to_csv(cm_filename, index=False)
print(f"Confusion Matrix saved to {cm_filename}")
return accuracy, f1, auc_roc
if __name__ == "__main__":
model_path = f"./output/version_{version}/best_model_{version}.pth"
tokenizer_path = f"./output/version_{version}/tokenizer_{version}.pickle"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Device: {device}")
accuracy, f1, auc_roc = run_evaluation(model_path, tokenizer_path, device)
print(f"Accuracy: {accuracy:.4f}, F1 Score: {f1:.4f}, AUC-ROC: {auc_roc:.4f}")