kghanlon commited on
Commit
c3f9eb6
1 Parent(s): fa609b8

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: FacebookAI/roberta-large
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: non_green_as_train_context_roberta-large
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # non_green_as_train_context_roberta-large
19
+
20
+ This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1773
23
+ - Accuracy: 0.9776
24
+ - Recall: 0.6993
25
+ - F1: 0.7021
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 1e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 5
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|
57
+ | 0.0584 | 1.0 | 7739 | 0.0916 | 0.9725 | 0.6942 | 0.6562 |
58
+ | 0.0451 | 2.0 | 15478 | 0.0905 | 0.9773 | 0.6700 | 0.6902 |
59
+ | 0.0296 | 3.0 | 23217 | 0.1112 | 0.9775 | 0.6912 | 0.6986 |
60
+ | 0.0141 | 4.0 | 30956 | 0.1487 | 0.9759 | 0.7366 | 0.6979 |
61
+ | 0.0102 | 5.0 | 38695 | 0.1773 | 0.9776 | 0.6993 | 0.7021 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.38.2
67
+ - Pytorch 2.1.2
68
+ - Datasets 2.18.0
69
+ - Tokenizers 0.15.2