Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: FacebookAI/roberta-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: non_green_as_train_context_roberta-large
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# non_green_as_train_context_roberta-large
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1773
|
23 |
+
- Accuracy: 0.9776
|
24 |
+
- Recall: 0.6993
|
25 |
+
- F1: 0.7021
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 1e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 5
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|
|
57 |
+
| 0.0584 | 1.0 | 7739 | 0.0916 | 0.9725 | 0.6942 | 0.6562 |
|
58 |
+
| 0.0451 | 2.0 | 15478 | 0.0905 | 0.9773 | 0.6700 | 0.6902 |
|
59 |
+
| 0.0296 | 3.0 | 23217 | 0.1112 | 0.9775 | 0.6912 | 0.6986 |
|
60 |
+
| 0.0141 | 4.0 | 30956 | 0.1487 | 0.9759 | 0.7366 | 0.6979 |
|
61 |
+
| 0.0102 | 5.0 | 38695 | 0.1773 | 0.9776 | 0.6993 | 0.7021 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.38.2
|
67 |
+
- Pytorch 2.1.2
|
68 |
+
- Datasets 2.18.0
|
69 |
+
- Tokenizers 0.15.2
|