Add files using upload-large-folder tool
Browse files- third_party/Matcha-TTS/matcha/hifigan/xutils.py +60 -0
- third_party/Matcha-TTS/matcha/models/components/decoder.py +443 -0
- third_party/Matcha-TTS/matcha/models/components/text_encoder.py +410 -0
- third_party/Matcha-TTS/matcha/models/components/transformer.py +316 -0
- third_party/Matcha-TTS/matcha/text/numbers.py +71 -0
- third_party/Matcha-TTS/matcha/text/symbols.py +17 -0
- third_party/Matcha-TTS/matcha/utils/audio.py +82 -0
- third_party/Matcha-TTS/matcha/utils/logging_utils.py +53 -0
- third_party/Matcha-TTS/matcha/utils/monotonic_align/__init__.py +22 -0
- third_party/Matcha-TTS/matcha/utils/monotonic_align/core.pyx +47 -0
- third_party/Matcha-TTS/matcha/utils/pylogger.py +21 -0
- third_party/Matcha-TTS/notebooks/.gitkeep +0 -0
- third_party/Matcha-TTS/scripts/schedule.sh +7 -0
- tools/extract_embedding.py +77 -0
- tools/extract_speech_token.py +72 -0
- tools/make_parquet_list.py +113 -0
third_party/Matcha-TTS/matcha/hifigan/xutils.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jik876/hifi-gan """
|
2 |
+
|
3 |
+
import glob
|
4 |
+
import os
|
5 |
+
|
6 |
+
import matplotlib
|
7 |
+
import torch
|
8 |
+
from torch.nn.utils import weight_norm
|
9 |
+
|
10 |
+
matplotlib.use("Agg")
|
11 |
+
import matplotlib.pylab as plt
|
12 |
+
|
13 |
+
|
14 |
+
def plot_spectrogram(spectrogram):
|
15 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
16 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
17 |
+
plt.colorbar(im, ax=ax)
|
18 |
+
|
19 |
+
fig.canvas.draw()
|
20 |
+
plt.close()
|
21 |
+
|
22 |
+
return fig
|
23 |
+
|
24 |
+
|
25 |
+
def init_weights(m, mean=0.0, std=0.01):
|
26 |
+
classname = m.__class__.__name__
|
27 |
+
if classname.find("Conv") != -1:
|
28 |
+
m.weight.data.normal_(mean, std)
|
29 |
+
|
30 |
+
|
31 |
+
def apply_weight_norm(m):
|
32 |
+
classname = m.__class__.__name__
|
33 |
+
if classname.find("Conv") != -1:
|
34 |
+
weight_norm(m)
|
35 |
+
|
36 |
+
|
37 |
+
def get_padding(kernel_size, dilation=1):
|
38 |
+
return int((kernel_size * dilation - dilation) / 2)
|
39 |
+
|
40 |
+
|
41 |
+
def load_checkpoint(filepath, device):
|
42 |
+
assert os.path.isfile(filepath)
|
43 |
+
print(f"Loading '{filepath}'")
|
44 |
+
checkpoint_dict = torch.load(filepath, map_location=device)
|
45 |
+
print("Complete.")
|
46 |
+
return checkpoint_dict
|
47 |
+
|
48 |
+
|
49 |
+
def save_checkpoint(filepath, obj):
|
50 |
+
print(f"Saving checkpoint to {filepath}")
|
51 |
+
torch.save(obj, filepath)
|
52 |
+
print("Complete.")
|
53 |
+
|
54 |
+
|
55 |
+
def scan_checkpoint(cp_dir, prefix):
|
56 |
+
pattern = os.path.join(cp_dir, prefix + "????????")
|
57 |
+
cp_list = glob.glob(pattern)
|
58 |
+
if len(cp_list) == 0:
|
59 |
+
return None
|
60 |
+
return sorted(cp_list)[-1]
|
third_party/Matcha-TTS/matcha/models/components/decoder.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from conformer import ConformerBlock
|
8 |
+
from diffusers.models.activations import get_activation
|
9 |
+
from einops import pack, rearrange, repeat
|
10 |
+
|
11 |
+
from matcha.models.components.transformer import BasicTransformerBlock
|
12 |
+
|
13 |
+
|
14 |
+
class SinusoidalPosEmb(torch.nn.Module):
|
15 |
+
def __init__(self, dim):
|
16 |
+
super().__init__()
|
17 |
+
self.dim = dim
|
18 |
+
assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even"
|
19 |
+
|
20 |
+
def forward(self, x, scale=1000):
|
21 |
+
if x.ndim < 1:
|
22 |
+
x = x.unsqueeze(0)
|
23 |
+
device = x.device
|
24 |
+
half_dim = self.dim // 2
|
25 |
+
emb = math.log(10000) / (half_dim - 1)
|
26 |
+
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
27 |
+
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
28 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
29 |
+
return emb
|
30 |
+
|
31 |
+
|
32 |
+
class Block1D(torch.nn.Module):
|
33 |
+
def __init__(self, dim, dim_out, groups=8):
|
34 |
+
super().__init__()
|
35 |
+
self.block = torch.nn.Sequential(
|
36 |
+
torch.nn.Conv1d(dim, dim_out, 3, padding=1),
|
37 |
+
torch.nn.GroupNorm(groups, dim_out),
|
38 |
+
nn.Mish(),
|
39 |
+
)
|
40 |
+
|
41 |
+
def forward(self, x, mask):
|
42 |
+
output = self.block(x * mask)
|
43 |
+
return output * mask
|
44 |
+
|
45 |
+
|
46 |
+
class ResnetBlock1D(torch.nn.Module):
|
47 |
+
def __init__(self, dim, dim_out, time_emb_dim, groups=8):
|
48 |
+
super().__init__()
|
49 |
+
self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out))
|
50 |
+
|
51 |
+
self.block1 = Block1D(dim, dim_out, groups=groups)
|
52 |
+
self.block2 = Block1D(dim_out, dim_out, groups=groups)
|
53 |
+
|
54 |
+
self.res_conv = torch.nn.Conv1d(dim, dim_out, 1)
|
55 |
+
|
56 |
+
def forward(self, x, mask, time_emb):
|
57 |
+
h = self.block1(x, mask)
|
58 |
+
h += self.mlp(time_emb).unsqueeze(-1)
|
59 |
+
h = self.block2(h, mask)
|
60 |
+
output = h + self.res_conv(x * mask)
|
61 |
+
return output
|
62 |
+
|
63 |
+
|
64 |
+
class Downsample1D(nn.Module):
|
65 |
+
def __init__(self, dim):
|
66 |
+
super().__init__()
|
67 |
+
self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1)
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
return self.conv(x)
|
71 |
+
|
72 |
+
|
73 |
+
class TimestepEmbedding(nn.Module):
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
in_channels: int,
|
77 |
+
time_embed_dim: int,
|
78 |
+
act_fn: str = "silu",
|
79 |
+
out_dim: int = None,
|
80 |
+
post_act_fn: Optional[str] = None,
|
81 |
+
cond_proj_dim=None,
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
self.linear_1 = nn.Linear(in_channels, time_embed_dim)
|
86 |
+
|
87 |
+
if cond_proj_dim is not None:
|
88 |
+
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
|
89 |
+
else:
|
90 |
+
self.cond_proj = None
|
91 |
+
|
92 |
+
self.act = get_activation(act_fn)
|
93 |
+
|
94 |
+
if out_dim is not None:
|
95 |
+
time_embed_dim_out = out_dim
|
96 |
+
else:
|
97 |
+
time_embed_dim_out = time_embed_dim
|
98 |
+
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
|
99 |
+
|
100 |
+
if post_act_fn is None:
|
101 |
+
self.post_act = None
|
102 |
+
else:
|
103 |
+
self.post_act = get_activation(post_act_fn)
|
104 |
+
|
105 |
+
def forward(self, sample, condition=None):
|
106 |
+
if condition is not None:
|
107 |
+
sample = sample + self.cond_proj(condition)
|
108 |
+
sample = self.linear_1(sample)
|
109 |
+
|
110 |
+
if self.act is not None:
|
111 |
+
sample = self.act(sample)
|
112 |
+
|
113 |
+
sample = self.linear_2(sample)
|
114 |
+
|
115 |
+
if self.post_act is not None:
|
116 |
+
sample = self.post_act(sample)
|
117 |
+
return sample
|
118 |
+
|
119 |
+
|
120 |
+
class Upsample1D(nn.Module):
|
121 |
+
"""A 1D upsampling layer with an optional convolution.
|
122 |
+
|
123 |
+
Parameters:
|
124 |
+
channels (`int`):
|
125 |
+
number of channels in the inputs and outputs.
|
126 |
+
use_conv (`bool`, default `False`):
|
127 |
+
option to use a convolution.
|
128 |
+
use_conv_transpose (`bool`, default `False`):
|
129 |
+
option to use a convolution transpose.
|
130 |
+
out_channels (`int`, optional):
|
131 |
+
number of output channels. Defaults to `channels`.
|
132 |
+
"""
|
133 |
+
|
134 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv"):
|
135 |
+
super().__init__()
|
136 |
+
self.channels = channels
|
137 |
+
self.out_channels = out_channels or channels
|
138 |
+
self.use_conv = use_conv
|
139 |
+
self.use_conv_transpose = use_conv_transpose
|
140 |
+
self.name = name
|
141 |
+
|
142 |
+
self.conv = None
|
143 |
+
if use_conv_transpose:
|
144 |
+
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
|
145 |
+
elif use_conv:
|
146 |
+
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
|
147 |
+
|
148 |
+
def forward(self, inputs):
|
149 |
+
assert inputs.shape[1] == self.channels
|
150 |
+
if self.use_conv_transpose:
|
151 |
+
return self.conv(inputs)
|
152 |
+
|
153 |
+
outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")
|
154 |
+
|
155 |
+
if self.use_conv:
|
156 |
+
outputs = self.conv(outputs)
|
157 |
+
|
158 |
+
return outputs
|
159 |
+
|
160 |
+
|
161 |
+
class ConformerWrapper(ConformerBlock):
|
162 |
+
def __init__( # pylint: disable=useless-super-delegation
|
163 |
+
self,
|
164 |
+
*,
|
165 |
+
dim,
|
166 |
+
dim_head=64,
|
167 |
+
heads=8,
|
168 |
+
ff_mult=4,
|
169 |
+
conv_expansion_factor=2,
|
170 |
+
conv_kernel_size=31,
|
171 |
+
attn_dropout=0,
|
172 |
+
ff_dropout=0,
|
173 |
+
conv_dropout=0,
|
174 |
+
conv_causal=False,
|
175 |
+
):
|
176 |
+
super().__init__(
|
177 |
+
dim=dim,
|
178 |
+
dim_head=dim_head,
|
179 |
+
heads=heads,
|
180 |
+
ff_mult=ff_mult,
|
181 |
+
conv_expansion_factor=conv_expansion_factor,
|
182 |
+
conv_kernel_size=conv_kernel_size,
|
183 |
+
attn_dropout=attn_dropout,
|
184 |
+
ff_dropout=ff_dropout,
|
185 |
+
conv_dropout=conv_dropout,
|
186 |
+
conv_causal=conv_causal,
|
187 |
+
)
|
188 |
+
|
189 |
+
def forward(
|
190 |
+
self,
|
191 |
+
hidden_states,
|
192 |
+
attention_mask,
|
193 |
+
encoder_hidden_states=None,
|
194 |
+
encoder_attention_mask=None,
|
195 |
+
timestep=None,
|
196 |
+
):
|
197 |
+
return super().forward(x=hidden_states, mask=attention_mask.bool())
|
198 |
+
|
199 |
+
|
200 |
+
class Decoder(nn.Module):
|
201 |
+
def __init__(
|
202 |
+
self,
|
203 |
+
in_channels,
|
204 |
+
out_channels,
|
205 |
+
channels=(256, 256),
|
206 |
+
dropout=0.05,
|
207 |
+
attention_head_dim=64,
|
208 |
+
n_blocks=1,
|
209 |
+
num_mid_blocks=2,
|
210 |
+
num_heads=4,
|
211 |
+
act_fn="snake",
|
212 |
+
down_block_type="transformer",
|
213 |
+
mid_block_type="transformer",
|
214 |
+
up_block_type="transformer",
|
215 |
+
):
|
216 |
+
super().__init__()
|
217 |
+
channels = tuple(channels)
|
218 |
+
self.in_channels = in_channels
|
219 |
+
self.out_channels = out_channels
|
220 |
+
|
221 |
+
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
222 |
+
time_embed_dim = channels[0] * 4
|
223 |
+
self.time_mlp = TimestepEmbedding(
|
224 |
+
in_channels=in_channels,
|
225 |
+
time_embed_dim=time_embed_dim,
|
226 |
+
act_fn="silu",
|
227 |
+
)
|
228 |
+
|
229 |
+
self.down_blocks = nn.ModuleList([])
|
230 |
+
self.mid_blocks = nn.ModuleList([])
|
231 |
+
self.up_blocks = nn.ModuleList([])
|
232 |
+
|
233 |
+
output_channel = in_channels
|
234 |
+
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
235 |
+
input_channel = output_channel
|
236 |
+
output_channel = channels[i]
|
237 |
+
is_last = i == len(channels) - 1
|
238 |
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
239 |
+
transformer_blocks = nn.ModuleList(
|
240 |
+
[
|
241 |
+
self.get_block(
|
242 |
+
down_block_type,
|
243 |
+
output_channel,
|
244 |
+
attention_head_dim,
|
245 |
+
num_heads,
|
246 |
+
dropout,
|
247 |
+
act_fn,
|
248 |
+
)
|
249 |
+
for _ in range(n_blocks)
|
250 |
+
]
|
251 |
+
)
|
252 |
+
downsample = (
|
253 |
+
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
254 |
+
)
|
255 |
+
|
256 |
+
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
257 |
+
|
258 |
+
for i in range(num_mid_blocks):
|
259 |
+
input_channel = channels[-1]
|
260 |
+
out_channels = channels[-1]
|
261 |
+
|
262 |
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
263 |
+
|
264 |
+
transformer_blocks = nn.ModuleList(
|
265 |
+
[
|
266 |
+
self.get_block(
|
267 |
+
mid_block_type,
|
268 |
+
output_channel,
|
269 |
+
attention_head_dim,
|
270 |
+
num_heads,
|
271 |
+
dropout,
|
272 |
+
act_fn,
|
273 |
+
)
|
274 |
+
for _ in range(n_blocks)
|
275 |
+
]
|
276 |
+
)
|
277 |
+
|
278 |
+
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
279 |
+
|
280 |
+
channels = channels[::-1] + (channels[0],)
|
281 |
+
for i in range(len(channels) - 1):
|
282 |
+
input_channel = channels[i]
|
283 |
+
output_channel = channels[i + 1]
|
284 |
+
is_last = i == len(channels) - 2
|
285 |
+
|
286 |
+
resnet = ResnetBlock1D(
|
287 |
+
dim=2 * input_channel,
|
288 |
+
dim_out=output_channel,
|
289 |
+
time_emb_dim=time_embed_dim,
|
290 |
+
)
|
291 |
+
transformer_blocks = nn.ModuleList(
|
292 |
+
[
|
293 |
+
self.get_block(
|
294 |
+
up_block_type,
|
295 |
+
output_channel,
|
296 |
+
attention_head_dim,
|
297 |
+
num_heads,
|
298 |
+
dropout,
|
299 |
+
act_fn,
|
300 |
+
)
|
301 |
+
for _ in range(n_blocks)
|
302 |
+
]
|
303 |
+
)
|
304 |
+
upsample = (
|
305 |
+
Upsample1D(output_channel, use_conv_transpose=True)
|
306 |
+
if not is_last
|
307 |
+
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
308 |
+
)
|
309 |
+
|
310 |
+
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
311 |
+
|
312 |
+
self.final_block = Block1D(channels[-1], channels[-1])
|
313 |
+
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
314 |
+
|
315 |
+
self.initialize_weights()
|
316 |
+
# nn.init.normal_(self.final_proj.weight)
|
317 |
+
|
318 |
+
@staticmethod
|
319 |
+
def get_block(block_type, dim, attention_head_dim, num_heads, dropout, act_fn):
|
320 |
+
if block_type == "conformer":
|
321 |
+
block = ConformerWrapper(
|
322 |
+
dim=dim,
|
323 |
+
dim_head=attention_head_dim,
|
324 |
+
heads=num_heads,
|
325 |
+
ff_mult=1,
|
326 |
+
conv_expansion_factor=2,
|
327 |
+
ff_dropout=dropout,
|
328 |
+
attn_dropout=dropout,
|
329 |
+
conv_dropout=dropout,
|
330 |
+
conv_kernel_size=31,
|
331 |
+
)
|
332 |
+
elif block_type == "transformer":
|
333 |
+
block = BasicTransformerBlock(
|
334 |
+
dim=dim,
|
335 |
+
num_attention_heads=num_heads,
|
336 |
+
attention_head_dim=attention_head_dim,
|
337 |
+
dropout=dropout,
|
338 |
+
activation_fn=act_fn,
|
339 |
+
)
|
340 |
+
else:
|
341 |
+
raise ValueError(f"Unknown block type {block_type}")
|
342 |
+
|
343 |
+
return block
|
344 |
+
|
345 |
+
def initialize_weights(self):
|
346 |
+
for m in self.modules():
|
347 |
+
if isinstance(m, nn.Conv1d):
|
348 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
349 |
+
|
350 |
+
if m.bias is not None:
|
351 |
+
nn.init.constant_(m.bias, 0)
|
352 |
+
|
353 |
+
elif isinstance(m, nn.GroupNorm):
|
354 |
+
nn.init.constant_(m.weight, 1)
|
355 |
+
nn.init.constant_(m.bias, 0)
|
356 |
+
|
357 |
+
elif isinstance(m, nn.Linear):
|
358 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
359 |
+
|
360 |
+
if m.bias is not None:
|
361 |
+
nn.init.constant_(m.bias, 0)
|
362 |
+
|
363 |
+
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
364 |
+
"""Forward pass of the UNet1DConditional model.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
x (torch.Tensor): shape (batch_size, in_channels, time)
|
368 |
+
mask (_type_): shape (batch_size, 1, time)
|
369 |
+
t (_type_): shape (batch_size)
|
370 |
+
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
371 |
+
cond (_type_, optional): placeholder for future use. Defaults to None.
|
372 |
+
|
373 |
+
Raises:
|
374 |
+
ValueError: _description_
|
375 |
+
ValueError: _description_
|
376 |
+
|
377 |
+
Returns:
|
378 |
+
_type_: _description_
|
379 |
+
"""
|
380 |
+
|
381 |
+
t = self.time_embeddings(t)
|
382 |
+
t = self.time_mlp(t)
|
383 |
+
|
384 |
+
x = pack([x, mu], "b * t")[0]
|
385 |
+
|
386 |
+
if spks is not None:
|
387 |
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
388 |
+
x = pack([x, spks], "b * t")[0]
|
389 |
+
|
390 |
+
hiddens = []
|
391 |
+
masks = [mask]
|
392 |
+
for resnet, transformer_blocks, downsample in self.down_blocks:
|
393 |
+
mask_down = masks[-1]
|
394 |
+
x = resnet(x, mask_down, t)
|
395 |
+
x = rearrange(x, "b c t -> b t c")
|
396 |
+
mask_down = rearrange(mask_down, "b 1 t -> b t")
|
397 |
+
for transformer_block in transformer_blocks:
|
398 |
+
x = transformer_block(
|
399 |
+
hidden_states=x,
|
400 |
+
attention_mask=mask_down,
|
401 |
+
timestep=t,
|
402 |
+
)
|
403 |
+
x = rearrange(x, "b t c -> b c t")
|
404 |
+
mask_down = rearrange(mask_down, "b t -> b 1 t")
|
405 |
+
hiddens.append(x) # Save hidden states for skip connections
|
406 |
+
x = downsample(x * mask_down)
|
407 |
+
masks.append(mask_down[:, :, ::2])
|
408 |
+
|
409 |
+
masks = masks[:-1]
|
410 |
+
mask_mid = masks[-1]
|
411 |
+
|
412 |
+
for resnet, transformer_blocks in self.mid_blocks:
|
413 |
+
x = resnet(x, mask_mid, t)
|
414 |
+
x = rearrange(x, "b c t -> b t c")
|
415 |
+
mask_mid = rearrange(mask_mid, "b 1 t -> b t")
|
416 |
+
for transformer_block in transformer_blocks:
|
417 |
+
x = transformer_block(
|
418 |
+
hidden_states=x,
|
419 |
+
attention_mask=mask_mid,
|
420 |
+
timestep=t,
|
421 |
+
)
|
422 |
+
x = rearrange(x, "b t c -> b c t")
|
423 |
+
mask_mid = rearrange(mask_mid, "b t -> b 1 t")
|
424 |
+
|
425 |
+
for resnet, transformer_blocks, upsample in self.up_blocks:
|
426 |
+
mask_up = masks.pop()
|
427 |
+
x = resnet(pack([x, hiddens.pop()], "b * t")[0], mask_up, t)
|
428 |
+
x = rearrange(x, "b c t -> b t c")
|
429 |
+
mask_up = rearrange(mask_up, "b 1 t -> b t")
|
430 |
+
for transformer_block in transformer_blocks:
|
431 |
+
x = transformer_block(
|
432 |
+
hidden_states=x,
|
433 |
+
attention_mask=mask_up,
|
434 |
+
timestep=t,
|
435 |
+
)
|
436 |
+
x = rearrange(x, "b t c -> b c t")
|
437 |
+
mask_up = rearrange(mask_up, "b t -> b 1 t")
|
438 |
+
x = upsample(x * mask_up)
|
439 |
+
|
440 |
+
x = self.final_block(x, mask_up)
|
441 |
+
output = self.final_proj(x * mask_up)
|
442 |
+
|
443 |
+
return output * mask
|
third_party/Matcha-TTS/matcha/models/components/text_encoder.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jaywalnut310/glow-tts """
|
2 |
+
|
3 |
+
import math
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
import matcha.utils as utils
|
10 |
+
from matcha.utils.model import sequence_mask
|
11 |
+
|
12 |
+
log = utils.get_pylogger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
class LayerNorm(nn.Module):
|
16 |
+
def __init__(self, channels, eps=1e-4):
|
17 |
+
super().__init__()
|
18 |
+
self.channels = channels
|
19 |
+
self.eps = eps
|
20 |
+
|
21 |
+
self.gamma = torch.nn.Parameter(torch.ones(channels))
|
22 |
+
self.beta = torch.nn.Parameter(torch.zeros(channels))
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
n_dims = len(x.shape)
|
26 |
+
mean = torch.mean(x, 1, keepdim=True)
|
27 |
+
variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
|
28 |
+
|
29 |
+
x = (x - mean) * torch.rsqrt(variance + self.eps)
|
30 |
+
|
31 |
+
shape = [1, -1] + [1] * (n_dims - 2)
|
32 |
+
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
class ConvReluNorm(nn.Module):
|
37 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
38 |
+
super().__init__()
|
39 |
+
self.in_channels = in_channels
|
40 |
+
self.hidden_channels = hidden_channels
|
41 |
+
self.out_channels = out_channels
|
42 |
+
self.kernel_size = kernel_size
|
43 |
+
self.n_layers = n_layers
|
44 |
+
self.p_dropout = p_dropout
|
45 |
+
|
46 |
+
self.conv_layers = torch.nn.ModuleList()
|
47 |
+
self.norm_layers = torch.nn.ModuleList()
|
48 |
+
self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
|
49 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
50 |
+
self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout))
|
51 |
+
for _ in range(n_layers - 1):
|
52 |
+
self.conv_layers.append(
|
53 |
+
torch.nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)
|
54 |
+
)
|
55 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
56 |
+
self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1)
|
57 |
+
self.proj.weight.data.zero_()
|
58 |
+
self.proj.bias.data.zero_()
|
59 |
+
|
60 |
+
def forward(self, x, x_mask):
|
61 |
+
x_org = x
|
62 |
+
for i in range(self.n_layers):
|
63 |
+
x = self.conv_layers[i](x * x_mask)
|
64 |
+
x = self.norm_layers[i](x)
|
65 |
+
x = self.relu_drop(x)
|
66 |
+
x = x_org + self.proj(x)
|
67 |
+
return x * x_mask
|
68 |
+
|
69 |
+
|
70 |
+
class DurationPredictor(nn.Module):
|
71 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
|
72 |
+
super().__init__()
|
73 |
+
self.in_channels = in_channels
|
74 |
+
self.filter_channels = filter_channels
|
75 |
+
self.p_dropout = p_dropout
|
76 |
+
|
77 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
78 |
+
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
79 |
+
self.norm_1 = LayerNorm(filter_channels)
|
80 |
+
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
81 |
+
self.norm_2 = LayerNorm(filter_channels)
|
82 |
+
self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
|
83 |
+
|
84 |
+
def forward(self, x, x_mask):
|
85 |
+
x = self.conv_1(x * x_mask)
|
86 |
+
x = torch.relu(x)
|
87 |
+
x = self.norm_1(x)
|
88 |
+
x = self.drop(x)
|
89 |
+
x = self.conv_2(x * x_mask)
|
90 |
+
x = torch.relu(x)
|
91 |
+
x = self.norm_2(x)
|
92 |
+
x = self.drop(x)
|
93 |
+
x = self.proj(x * x_mask)
|
94 |
+
return x * x_mask
|
95 |
+
|
96 |
+
|
97 |
+
class RotaryPositionalEmbeddings(nn.Module):
|
98 |
+
"""
|
99 |
+
## RoPE module
|
100 |
+
|
101 |
+
Rotary encoding transforms pairs of features by rotating in the 2D plane.
|
102 |
+
That is, it organizes the $d$ features as $\frac{d}{2}$ pairs.
|
103 |
+
Each pair can be considered a coordinate in a 2D plane, and the encoding will rotate it
|
104 |
+
by an angle depending on the position of the token.
|
105 |
+
"""
|
106 |
+
|
107 |
+
def __init__(self, d: int, base: int = 10_000):
|
108 |
+
r"""
|
109 |
+
* `d` is the number of features $d$
|
110 |
+
* `base` is the constant used for calculating $\Theta$
|
111 |
+
"""
|
112 |
+
super().__init__()
|
113 |
+
|
114 |
+
self.base = base
|
115 |
+
self.d = int(d)
|
116 |
+
self.cos_cached = None
|
117 |
+
self.sin_cached = None
|
118 |
+
|
119 |
+
def _build_cache(self, x: torch.Tensor):
|
120 |
+
r"""
|
121 |
+
Cache $\cos$ and $\sin$ values
|
122 |
+
"""
|
123 |
+
# Return if cache is already built
|
124 |
+
if self.cos_cached is not None and x.shape[0] <= self.cos_cached.shape[0]:
|
125 |
+
return
|
126 |
+
|
127 |
+
# Get sequence length
|
128 |
+
seq_len = x.shape[0]
|
129 |
+
|
130 |
+
# $\Theta = {\theta_i = 10000^{-\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
|
131 |
+
theta = 1.0 / (self.base ** (torch.arange(0, self.d, 2).float() / self.d)).to(x.device)
|
132 |
+
|
133 |
+
# Create position indexes `[0, 1, ..., seq_len - 1]`
|
134 |
+
seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device)
|
135 |
+
|
136 |
+
# Calculate the product of position index and $\theta_i$
|
137 |
+
idx_theta = torch.einsum("n,d->nd", seq_idx, theta)
|
138 |
+
|
139 |
+
# Concatenate so that for row $m$ we have
|
140 |
+
# $[m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}, m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}]$
|
141 |
+
idx_theta2 = torch.cat([idx_theta, idx_theta], dim=1)
|
142 |
+
|
143 |
+
# Cache them
|
144 |
+
self.cos_cached = idx_theta2.cos()[:, None, None, :]
|
145 |
+
self.sin_cached = idx_theta2.sin()[:, None, None, :]
|
146 |
+
|
147 |
+
def _neg_half(self, x: torch.Tensor):
|
148 |
+
# $\frac{d}{2}$
|
149 |
+
d_2 = self.d // 2
|
150 |
+
|
151 |
+
# Calculate $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
|
152 |
+
return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1)
|
153 |
+
|
154 |
+
def forward(self, x: torch.Tensor):
|
155 |
+
"""
|
156 |
+
* `x` is the Tensor at the head of a key or a query with shape `[seq_len, batch_size, n_heads, d]`
|
157 |
+
"""
|
158 |
+
# Cache $\cos$ and $\sin$ values
|
159 |
+
x = rearrange(x, "b h t d -> t b h d")
|
160 |
+
|
161 |
+
self._build_cache(x)
|
162 |
+
|
163 |
+
# Split the features, we can choose to apply rotary embeddings only to a partial set of features.
|
164 |
+
x_rope, x_pass = x[..., : self.d], x[..., self.d :]
|
165 |
+
|
166 |
+
# Calculate
|
167 |
+
# $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
|
168 |
+
neg_half_x = self._neg_half(x_rope)
|
169 |
+
|
170 |
+
x_rope = (x_rope * self.cos_cached[: x.shape[0]]) + (neg_half_x * self.sin_cached[: x.shape[0]])
|
171 |
+
|
172 |
+
return rearrange(torch.cat((x_rope, x_pass), dim=-1), "t b h d -> b h t d")
|
173 |
+
|
174 |
+
|
175 |
+
class MultiHeadAttention(nn.Module):
|
176 |
+
def __init__(
|
177 |
+
self,
|
178 |
+
channels,
|
179 |
+
out_channels,
|
180 |
+
n_heads,
|
181 |
+
heads_share=True,
|
182 |
+
p_dropout=0.0,
|
183 |
+
proximal_bias=False,
|
184 |
+
proximal_init=False,
|
185 |
+
):
|
186 |
+
super().__init__()
|
187 |
+
assert channels % n_heads == 0
|
188 |
+
|
189 |
+
self.channels = channels
|
190 |
+
self.out_channels = out_channels
|
191 |
+
self.n_heads = n_heads
|
192 |
+
self.heads_share = heads_share
|
193 |
+
self.proximal_bias = proximal_bias
|
194 |
+
self.p_dropout = p_dropout
|
195 |
+
self.attn = None
|
196 |
+
|
197 |
+
self.k_channels = channels // n_heads
|
198 |
+
self.conv_q = torch.nn.Conv1d(channels, channels, 1)
|
199 |
+
self.conv_k = torch.nn.Conv1d(channels, channels, 1)
|
200 |
+
self.conv_v = torch.nn.Conv1d(channels, channels, 1)
|
201 |
+
|
202 |
+
# from https://nn.labml.ai/transformers/rope/index.html
|
203 |
+
self.query_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
|
204 |
+
self.key_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
|
205 |
+
|
206 |
+
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
|
207 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
208 |
+
|
209 |
+
torch.nn.init.xavier_uniform_(self.conv_q.weight)
|
210 |
+
torch.nn.init.xavier_uniform_(self.conv_k.weight)
|
211 |
+
if proximal_init:
|
212 |
+
self.conv_k.weight.data.copy_(self.conv_q.weight.data)
|
213 |
+
self.conv_k.bias.data.copy_(self.conv_q.bias.data)
|
214 |
+
torch.nn.init.xavier_uniform_(self.conv_v.weight)
|
215 |
+
|
216 |
+
def forward(self, x, c, attn_mask=None):
|
217 |
+
q = self.conv_q(x)
|
218 |
+
k = self.conv_k(c)
|
219 |
+
v = self.conv_v(c)
|
220 |
+
|
221 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
222 |
+
|
223 |
+
x = self.conv_o(x)
|
224 |
+
return x
|
225 |
+
|
226 |
+
def attention(self, query, key, value, mask=None):
|
227 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
228 |
+
query = rearrange(query, "b (h c) t-> b h t c", h=self.n_heads)
|
229 |
+
key = rearrange(key, "b (h c) t-> b h t c", h=self.n_heads)
|
230 |
+
value = rearrange(value, "b (h c) t-> b h t c", h=self.n_heads)
|
231 |
+
|
232 |
+
query = self.query_rotary_pe(query)
|
233 |
+
key = self.key_rotary_pe(key)
|
234 |
+
|
235 |
+
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
|
236 |
+
|
237 |
+
if self.proximal_bias:
|
238 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
239 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
240 |
+
if mask is not None:
|
241 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
242 |
+
p_attn = torch.nn.functional.softmax(scores, dim=-1)
|
243 |
+
p_attn = self.drop(p_attn)
|
244 |
+
output = torch.matmul(p_attn, value)
|
245 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t)
|
246 |
+
return output, p_attn
|
247 |
+
|
248 |
+
@staticmethod
|
249 |
+
def _attention_bias_proximal(length):
|
250 |
+
r = torch.arange(length, dtype=torch.float32)
|
251 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
252 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
253 |
+
|
254 |
+
|
255 |
+
class FFN(nn.Module):
|
256 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0):
|
257 |
+
super().__init__()
|
258 |
+
self.in_channels = in_channels
|
259 |
+
self.out_channels = out_channels
|
260 |
+
self.filter_channels = filter_channels
|
261 |
+
self.kernel_size = kernel_size
|
262 |
+
self.p_dropout = p_dropout
|
263 |
+
|
264 |
+
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
265 |
+
self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size // 2)
|
266 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
267 |
+
|
268 |
+
def forward(self, x, x_mask):
|
269 |
+
x = self.conv_1(x * x_mask)
|
270 |
+
x = torch.relu(x)
|
271 |
+
x = self.drop(x)
|
272 |
+
x = self.conv_2(x * x_mask)
|
273 |
+
return x * x_mask
|
274 |
+
|
275 |
+
|
276 |
+
class Encoder(nn.Module):
|
277 |
+
def __init__(
|
278 |
+
self,
|
279 |
+
hidden_channels,
|
280 |
+
filter_channels,
|
281 |
+
n_heads,
|
282 |
+
n_layers,
|
283 |
+
kernel_size=1,
|
284 |
+
p_dropout=0.0,
|
285 |
+
**kwargs,
|
286 |
+
):
|
287 |
+
super().__init__()
|
288 |
+
self.hidden_channels = hidden_channels
|
289 |
+
self.filter_channels = filter_channels
|
290 |
+
self.n_heads = n_heads
|
291 |
+
self.n_layers = n_layers
|
292 |
+
self.kernel_size = kernel_size
|
293 |
+
self.p_dropout = p_dropout
|
294 |
+
|
295 |
+
self.drop = torch.nn.Dropout(p_dropout)
|
296 |
+
self.attn_layers = torch.nn.ModuleList()
|
297 |
+
self.norm_layers_1 = torch.nn.ModuleList()
|
298 |
+
self.ffn_layers = torch.nn.ModuleList()
|
299 |
+
self.norm_layers_2 = torch.nn.ModuleList()
|
300 |
+
for _ in range(self.n_layers):
|
301 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
302 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
303 |
+
self.ffn_layers.append(
|
304 |
+
FFN(
|
305 |
+
hidden_channels,
|
306 |
+
hidden_channels,
|
307 |
+
filter_channels,
|
308 |
+
kernel_size,
|
309 |
+
p_dropout=p_dropout,
|
310 |
+
)
|
311 |
+
)
|
312 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
313 |
+
|
314 |
+
def forward(self, x, x_mask):
|
315 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
316 |
+
for i in range(self.n_layers):
|
317 |
+
x = x * x_mask
|
318 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
319 |
+
y = self.drop(y)
|
320 |
+
x = self.norm_layers_1[i](x + y)
|
321 |
+
y = self.ffn_layers[i](x, x_mask)
|
322 |
+
y = self.drop(y)
|
323 |
+
x = self.norm_layers_2[i](x + y)
|
324 |
+
x = x * x_mask
|
325 |
+
return x
|
326 |
+
|
327 |
+
|
328 |
+
class TextEncoder(nn.Module):
|
329 |
+
def __init__(
|
330 |
+
self,
|
331 |
+
encoder_type,
|
332 |
+
encoder_params,
|
333 |
+
duration_predictor_params,
|
334 |
+
n_vocab,
|
335 |
+
n_spks=1,
|
336 |
+
spk_emb_dim=128,
|
337 |
+
):
|
338 |
+
super().__init__()
|
339 |
+
self.encoder_type = encoder_type
|
340 |
+
self.n_vocab = n_vocab
|
341 |
+
self.n_feats = encoder_params.n_feats
|
342 |
+
self.n_channels = encoder_params.n_channels
|
343 |
+
self.spk_emb_dim = spk_emb_dim
|
344 |
+
self.n_spks = n_spks
|
345 |
+
|
346 |
+
self.emb = torch.nn.Embedding(n_vocab, self.n_channels)
|
347 |
+
torch.nn.init.normal_(self.emb.weight, 0.0, self.n_channels**-0.5)
|
348 |
+
|
349 |
+
if encoder_params.prenet:
|
350 |
+
self.prenet = ConvReluNorm(
|
351 |
+
self.n_channels,
|
352 |
+
self.n_channels,
|
353 |
+
self.n_channels,
|
354 |
+
kernel_size=5,
|
355 |
+
n_layers=3,
|
356 |
+
p_dropout=0.5,
|
357 |
+
)
|
358 |
+
else:
|
359 |
+
self.prenet = lambda x, x_mask: x
|
360 |
+
|
361 |
+
self.encoder = Encoder(
|
362 |
+
encoder_params.n_channels + (spk_emb_dim if n_spks > 1 else 0),
|
363 |
+
encoder_params.filter_channels,
|
364 |
+
encoder_params.n_heads,
|
365 |
+
encoder_params.n_layers,
|
366 |
+
encoder_params.kernel_size,
|
367 |
+
encoder_params.p_dropout,
|
368 |
+
)
|
369 |
+
|
370 |
+
self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
|
371 |
+
self.proj_w = DurationPredictor(
|
372 |
+
self.n_channels + (spk_emb_dim if n_spks > 1 else 0),
|
373 |
+
duration_predictor_params.filter_channels_dp,
|
374 |
+
duration_predictor_params.kernel_size,
|
375 |
+
duration_predictor_params.p_dropout,
|
376 |
+
)
|
377 |
+
|
378 |
+
def forward(self, x, x_lengths, spks=None):
|
379 |
+
"""Run forward pass to the transformer based encoder and duration predictor
|
380 |
+
|
381 |
+
Args:
|
382 |
+
x (torch.Tensor): text input
|
383 |
+
shape: (batch_size, max_text_length)
|
384 |
+
x_lengths (torch.Tensor): text input lengths
|
385 |
+
shape: (batch_size,)
|
386 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
387 |
+
shape: (batch_size,)
|
388 |
+
|
389 |
+
Returns:
|
390 |
+
mu (torch.Tensor): average output of the encoder
|
391 |
+
shape: (batch_size, n_feats, max_text_length)
|
392 |
+
logw (torch.Tensor): log duration predicted by the duration predictor
|
393 |
+
shape: (batch_size, 1, max_text_length)
|
394 |
+
x_mask (torch.Tensor): mask for the text input
|
395 |
+
shape: (batch_size, 1, max_text_length)
|
396 |
+
"""
|
397 |
+
x = self.emb(x) * math.sqrt(self.n_channels)
|
398 |
+
x = torch.transpose(x, 1, -1)
|
399 |
+
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
400 |
+
|
401 |
+
x = self.prenet(x, x_mask)
|
402 |
+
if self.n_spks > 1:
|
403 |
+
x = torch.cat([x, spks.unsqueeze(-1).repeat(1, 1, x.shape[-1])], dim=1)
|
404 |
+
x = self.encoder(x, x_mask)
|
405 |
+
mu = self.proj_m(x) * x_mask
|
406 |
+
|
407 |
+
x_dp = torch.detach(x)
|
408 |
+
logw = self.proj_w(x_dp, x_mask)
|
409 |
+
|
410 |
+
return mu, logw, x_mask
|
third_party/Matcha-TTS/matcha/models/components/transformer.py
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from diffusers.models.attention import (
|
6 |
+
GEGLU,
|
7 |
+
GELU,
|
8 |
+
AdaLayerNorm,
|
9 |
+
AdaLayerNormZero,
|
10 |
+
ApproximateGELU,
|
11 |
+
)
|
12 |
+
from diffusers.models.attention_processor import Attention
|
13 |
+
from diffusers.models.lora import LoRACompatibleLinear
|
14 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
15 |
+
|
16 |
+
|
17 |
+
class SnakeBeta(nn.Module):
|
18 |
+
"""
|
19 |
+
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
20 |
+
Shape:
|
21 |
+
- Input: (B, C, T)
|
22 |
+
- Output: (B, C, T), same shape as the input
|
23 |
+
Parameters:
|
24 |
+
- alpha - trainable parameter that controls frequency
|
25 |
+
- beta - trainable parameter that controls magnitude
|
26 |
+
References:
|
27 |
+
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
28 |
+
https://arxiv.org/abs/2006.08195
|
29 |
+
Examples:
|
30 |
+
>>> a1 = snakebeta(256)
|
31 |
+
>>> x = torch.randn(256)
|
32 |
+
>>> x = a1(x)
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(self, in_features, out_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
|
36 |
+
"""
|
37 |
+
Initialization.
|
38 |
+
INPUT:
|
39 |
+
- in_features: shape of the input
|
40 |
+
- alpha - trainable parameter that controls frequency
|
41 |
+
- beta - trainable parameter that controls magnitude
|
42 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
43 |
+
beta is initialized to 1 by default, higher values = higher-magnitude.
|
44 |
+
alpha will be trained along with the rest of your model.
|
45 |
+
"""
|
46 |
+
super().__init__()
|
47 |
+
self.in_features = out_features if isinstance(out_features, list) else [out_features]
|
48 |
+
self.proj = LoRACompatibleLinear(in_features, out_features)
|
49 |
+
|
50 |
+
# initialize alpha
|
51 |
+
self.alpha_logscale = alpha_logscale
|
52 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
53 |
+
self.alpha = nn.Parameter(torch.zeros(self.in_features) * alpha)
|
54 |
+
self.beta = nn.Parameter(torch.zeros(self.in_features) * alpha)
|
55 |
+
else: # linear scale alphas initialized to ones
|
56 |
+
self.alpha = nn.Parameter(torch.ones(self.in_features) * alpha)
|
57 |
+
self.beta = nn.Parameter(torch.ones(self.in_features) * alpha)
|
58 |
+
|
59 |
+
self.alpha.requires_grad = alpha_trainable
|
60 |
+
self.beta.requires_grad = alpha_trainable
|
61 |
+
|
62 |
+
self.no_div_by_zero = 0.000000001
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
"""
|
66 |
+
Forward pass of the function.
|
67 |
+
Applies the function to the input elementwise.
|
68 |
+
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
69 |
+
"""
|
70 |
+
x = self.proj(x)
|
71 |
+
if self.alpha_logscale:
|
72 |
+
alpha = torch.exp(self.alpha)
|
73 |
+
beta = torch.exp(self.beta)
|
74 |
+
else:
|
75 |
+
alpha = self.alpha
|
76 |
+
beta = self.beta
|
77 |
+
|
78 |
+
x = x + (1.0 / (beta + self.no_div_by_zero)) * torch.pow(torch.sin(x * alpha), 2)
|
79 |
+
|
80 |
+
return x
|
81 |
+
|
82 |
+
|
83 |
+
class FeedForward(nn.Module):
|
84 |
+
r"""
|
85 |
+
A feed-forward layer.
|
86 |
+
|
87 |
+
Parameters:
|
88 |
+
dim (`int`): The number of channels in the input.
|
89 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
90 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
91 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
92 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
93 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
dim: int,
|
99 |
+
dim_out: Optional[int] = None,
|
100 |
+
mult: int = 4,
|
101 |
+
dropout: float = 0.0,
|
102 |
+
activation_fn: str = "geglu",
|
103 |
+
final_dropout: bool = False,
|
104 |
+
):
|
105 |
+
super().__init__()
|
106 |
+
inner_dim = int(dim * mult)
|
107 |
+
dim_out = dim_out if dim_out is not None else dim
|
108 |
+
|
109 |
+
if activation_fn == "gelu":
|
110 |
+
act_fn = GELU(dim, inner_dim)
|
111 |
+
if activation_fn == "gelu-approximate":
|
112 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
113 |
+
elif activation_fn == "geglu":
|
114 |
+
act_fn = GEGLU(dim, inner_dim)
|
115 |
+
elif activation_fn == "geglu-approximate":
|
116 |
+
act_fn = ApproximateGELU(dim, inner_dim)
|
117 |
+
elif activation_fn == "snakebeta":
|
118 |
+
act_fn = SnakeBeta(dim, inner_dim)
|
119 |
+
|
120 |
+
self.net = nn.ModuleList([])
|
121 |
+
# project in
|
122 |
+
self.net.append(act_fn)
|
123 |
+
# project dropout
|
124 |
+
self.net.append(nn.Dropout(dropout))
|
125 |
+
# project out
|
126 |
+
self.net.append(LoRACompatibleLinear(inner_dim, dim_out))
|
127 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
128 |
+
if final_dropout:
|
129 |
+
self.net.append(nn.Dropout(dropout))
|
130 |
+
|
131 |
+
def forward(self, hidden_states):
|
132 |
+
for module in self.net:
|
133 |
+
hidden_states = module(hidden_states)
|
134 |
+
return hidden_states
|
135 |
+
|
136 |
+
|
137 |
+
@maybe_allow_in_graph
|
138 |
+
class BasicTransformerBlock(nn.Module):
|
139 |
+
r"""
|
140 |
+
A basic Transformer block.
|
141 |
+
|
142 |
+
Parameters:
|
143 |
+
dim (`int`): The number of channels in the input and output.
|
144 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
145 |
+
attention_head_dim (`int`): The number of channels in each head.
|
146 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
147 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
148 |
+
only_cross_attention (`bool`, *optional*):
|
149 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
150 |
+
double_self_attention (`bool`, *optional*):
|
151 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
152 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
153 |
+
num_embeds_ada_norm (:
|
154 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
155 |
+
attention_bias (:
|
156 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
157 |
+
"""
|
158 |
+
|
159 |
+
def __init__(
|
160 |
+
self,
|
161 |
+
dim: int,
|
162 |
+
num_attention_heads: int,
|
163 |
+
attention_head_dim: int,
|
164 |
+
dropout=0.0,
|
165 |
+
cross_attention_dim: Optional[int] = None,
|
166 |
+
activation_fn: str = "geglu",
|
167 |
+
num_embeds_ada_norm: Optional[int] = None,
|
168 |
+
attention_bias: bool = False,
|
169 |
+
only_cross_attention: bool = False,
|
170 |
+
double_self_attention: bool = False,
|
171 |
+
upcast_attention: bool = False,
|
172 |
+
norm_elementwise_affine: bool = True,
|
173 |
+
norm_type: str = "layer_norm",
|
174 |
+
final_dropout: bool = False,
|
175 |
+
):
|
176 |
+
super().__init__()
|
177 |
+
self.only_cross_attention = only_cross_attention
|
178 |
+
|
179 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
180 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
181 |
+
|
182 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
183 |
+
raise ValueError(
|
184 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
185 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
186 |
+
)
|
187 |
+
|
188 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
189 |
+
# 1. Self-Attn
|
190 |
+
if self.use_ada_layer_norm:
|
191 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
192 |
+
elif self.use_ada_layer_norm_zero:
|
193 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
194 |
+
else:
|
195 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
196 |
+
self.attn1 = Attention(
|
197 |
+
query_dim=dim,
|
198 |
+
heads=num_attention_heads,
|
199 |
+
dim_head=attention_head_dim,
|
200 |
+
dropout=dropout,
|
201 |
+
bias=attention_bias,
|
202 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
203 |
+
upcast_attention=upcast_attention,
|
204 |
+
)
|
205 |
+
|
206 |
+
# 2. Cross-Attn
|
207 |
+
if cross_attention_dim is not None or double_self_attention:
|
208 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
209 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
210 |
+
# the second cross attention block.
|
211 |
+
self.norm2 = (
|
212 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
213 |
+
if self.use_ada_layer_norm
|
214 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
215 |
+
)
|
216 |
+
self.attn2 = Attention(
|
217 |
+
query_dim=dim,
|
218 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
219 |
+
heads=num_attention_heads,
|
220 |
+
dim_head=attention_head_dim,
|
221 |
+
dropout=dropout,
|
222 |
+
bias=attention_bias,
|
223 |
+
upcast_attention=upcast_attention,
|
224 |
+
# scale_qk=False, # uncomment this to not to use flash attention
|
225 |
+
) # is self-attn if encoder_hidden_states is none
|
226 |
+
else:
|
227 |
+
self.norm2 = None
|
228 |
+
self.attn2 = None
|
229 |
+
|
230 |
+
# 3. Feed-forward
|
231 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
232 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
233 |
+
|
234 |
+
# let chunk size default to None
|
235 |
+
self._chunk_size = None
|
236 |
+
self._chunk_dim = 0
|
237 |
+
|
238 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
239 |
+
# Sets chunk feed-forward
|
240 |
+
self._chunk_size = chunk_size
|
241 |
+
self._chunk_dim = dim
|
242 |
+
|
243 |
+
def forward(
|
244 |
+
self,
|
245 |
+
hidden_states: torch.FloatTensor,
|
246 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
247 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
248 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
249 |
+
timestep: Optional[torch.LongTensor] = None,
|
250 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
251 |
+
class_labels: Optional[torch.LongTensor] = None,
|
252 |
+
):
|
253 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
254 |
+
# 1. Self-Attention
|
255 |
+
if self.use_ada_layer_norm:
|
256 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
257 |
+
elif self.use_ada_layer_norm_zero:
|
258 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
259 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
260 |
+
)
|
261 |
+
else:
|
262 |
+
norm_hidden_states = self.norm1(hidden_states)
|
263 |
+
|
264 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
265 |
+
|
266 |
+
attn_output = self.attn1(
|
267 |
+
norm_hidden_states,
|
268 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
269 |
+
attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask,
|
270 |
+
**cross_attention_kwargs,
|
271 |
+
)
|
272 |
+
if self.use_ada_layer_norm_zero:
|
273 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
274 |
+
hidden_states = attn_output + hidden_states
|
275 |
+
|
276 |
+
# 2. Cross-Attention
|
277 |
+
if self.attn2 is not None:
|
278 |
+
norm_hidden_states = (
|
279 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
280 |
+
)
|
281 |
+
|
282 |
+
attn_output = self.attn2(
|
283 |
+
norm_hidden_states,
|
284 |
+
encoder_hidden_states=encoder_hidden_states,
|
285 |
+
attention_mask=encoder_attention_mask,
|
286 |
+
**cross_attention_kwargs,
|
287 |
+
)
|
288 |
+
hidden_states = attn_output + hidden_states
|
289 |
+
|
290 |
+
# 3. Feed-forward
|
291 |
+
norm_hidden_states = self.norm3(hidden_states)
|
292 |
+
|
293 |
+
if self.use_ada_layer_norm_zero:
|
294 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
295 |
+
|
296 |
+
if self._chunk_size is not None:
|
297 |
+
# "feed_forward_chunk_size" can be used to save memory
|
298 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
299 |
+
raise ValueError(
|
300 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
301 |
+
)
|
302 |
+
|
303 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
304 |
+
ff_output = torch.cat(
|
305 |
+
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
306 |
+
dim=self._chunk_dim,
|
307 |
+
)
|
308 |
+
else:
|
309 |
+
ff_output = self.ff(norm_hidden_states)
|
310 |
+
|
311 |
+
if self.use_ada_layer_norm_zero:
|
312 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
313 |
+
|
314 |
+
hidden_states = ff_output + hidden_states
|
315 |
+
|
316 |
+
return hidden_states
|
third_party/Matcha-TTS/matcha/text/numbers.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
|
3 |
+
import re
|
4 |
+
|
5 |
+
import inflect
|
6 |
+
|
7 |
+
_inflect = inflect.engine()
|
8 |
+
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
|
9 |
+
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
|
10 |
+
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
|
11 |
+
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
|
12 |
+
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
|
13 |
+
_number_re = re.compile(r"[0-9]+")
|
14 |
+
|
15 |
+
|
16 |
+
def _remove_commas(m):
|
17 |
+
return m.group(1).replace(",", "")
|
18 |
+
|
19 |
+
|
20 |
+
def _expand_decimal_point(m):
|
21 |
+
return m.group(1).replace(".", " point ")
|
22 |
+
|
23 |
+
|
24 |
+
def _expand_dollars(m):
|
25 |
+
match = m.group(1)
|
26 |
+
parts = match.split(".")
|
27 |
+
if len(parts) > 2:
|
28 |
+
return match + " dollars"
|
29 |
+
dollars = int(parts[0]) if parts[0] else 0
|
30 |
+
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
|
31 |
+
if dollars and cents:
|
32 |
+
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
33 |
+
cent_unit = "cent" if cents == 1 else "cents"
|
34 |
+
return f"{dollars} {dollar_unit}, {cents} {cent_unit}"
|
35 |
+
elif dollars:
|
36 |
+
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
37 |
+
return f"{dollars} {dollar_unit}"
|
38 |
+
elif cents:
|
39 |
+
cent_unit = "cent" if cents == 1 else "cents"
|
40 |
+
return f"{cents} {cent_unit}"
|
41 |
+
else:
|
42 |
+
return "zero dollars"
|
43 |
+
|
44 |
+
|
45 |
+
def _expand_ordinal(m):
|
46 |
+
return _inflect.number_to_words(m.group(0))
|
47 |
+
|
48 |
+
|
49 |
+
def _expand_number(m):
|
50 |
+
num = int(m.group(0))
|
51 |
+
if num > 1000 and num < 3000:
|
52 |
+
if num == 2000:
|
53 |
+
return "two thousand"
|
54 |
+
elif num > 2000 and num < 2010:
|
55 |
+
return "two thousand " + _inflect.number_to_words(num % 100)
|
56 |
+
elif num % 100 == 0:
|
57 |
+
return _inflect.number_to_words(num // 100) + " hundred"
|
58 |
+
else:
|
59 |
+
return _inflect.number_to_words(num, andword="", zero="oh", group=2).replace(", ", " ")
|
60 |
+
else:
|
61 |
+
return _inflect.number_to_words(num, andword="")
|
62 |
+
|
63 |
+
|
64 |
+
def normalize_numbers(text):
|
65 |
+
text = re.sub(_comma_number_re, _remove_commas, text)
|
66 |
+
text = re.sub(_pounds_re, r"\1 pounds", text)
|
67 |
+
text = re.sub(_dollars_re, _expand_dollars, text)
|
68 |
+
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
|
69 |
+
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
70 |
+
text = re.sub(_number_re, _expand_number, text)
|
71 |
+
return text
|
third_party/Matcha-TTS/matcha/text/symbols.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron
|
2 |
+
|
3 |
+
Defines the set of symbols used in text input to the model.
|
4 |
+
"""
|
5 |
+
_pad = "_"
|
6 |
+
_punctuation = ';:,.!?¡¿—…"«»“” '
|
7 |
+
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
|
8 |
+
_letters_ipa = (
|
9 |
+
"ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
# Export all symbols:
|
14 |
+
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
15 |
+
|
16 |
+
# Special symbol ids
|
17 |
+
SPACE_ID = symbols.index(" ")
|
third_party/Matcha-TTS/matcha/utils/audio.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.utils.data
|
4 |
+
from librosa.filters import mel as librosa_mel_fn
|
5 |
+
from scipy.io.wavfile import read
|
6 |
+
|
7 |
+
MAX_WAV_VALUE = 32768.0
|
8 |
+
|
9 |
+
|
10 |
+
def load_wav(full_path):
|
11 |
+
sampling_rate, data = read(full_path)
|
12 |
+
return data, sampling_rate
|
13 |
+
|
14 |
+
|
15 |
+
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
16 |
+
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
17 |
+
|
18 |
+
|
19 |
+
def dynamic_range_decompression(x, C=1):
|
20 |
+
return np.exp(x) / C
|
21 |
+
|
22 |
+
|
23 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
24 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
25 |
+
|
26 |
+
|
27 |
+
def dynamic_range_decompression_torch(x, C=1):
|
28 |
+
return torch.exp(x) / C
|
29 |
+
|
30 |
+
|
31 |
+
def spectral_normalize_torch(magnitudes):
|
32 |
+
output = dynamic_range_compression_torch(magnitudes)
|
33 |
+
return output
|
34 |
+
|
35 |
+
|
36 |
+
def spectral_de_normalize_torch(magnitudes):
|
37 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
38 |
+
return output
|
39 |
+
|
40 |
+
|
41 |
+
mel_basis = {}
|
42 |
+
hann_window = {}
|
43 |
+
|
44 |
+
|
45 |
+
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
46 |
+
if torch.min(y) < -1.0:
|
47 |
+
print("min value is ", torch.min(y))
|
48 |
+
if torch.max(y) > 1.0:
|
49 |
+
print("max value is ", torch.max(y))
|
50 |
+
|
51 |
+
global mel_basis, hann_window # pylint: disable=global-statement
|
52 |
+
if f"{str(fmax)}_{str(y.device)}" not in mel_basis:
|
53 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
54 |
+
mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
55 |
+
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
|
56 |
+
|
57 |
+
y = torch.nn.functional.pad(
|
58 |
+
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
|
59 |
+
)
|
60 |
+
y = y.squeeze(1)
|
61 |
+
|
62 |
+
spec = torch.view_as_real(
|
63 |
+
torch.stft(
|
64 |
+
y,
|
65 |
+
n_fft,
|
66 |
+
hop_length=hop_size,
|
67 |
+
win_length=win_size,
|
68 |
+
window=hann_window[str(y.device)],
|
69 |
+
center=center,
|
70 |
+
pad_mode="reflect",
|
71 |
+
normalized=False,
|
72 |
+
onesided=True,
|
73 |
+
return_complex=True,
|
74 |
+
)
|
75 |
+
)
|
76 |
+
|
77 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
|
78 |
+
|
79 |
+
spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec)
|
80 |
+
spec = spectral_normalize_torch(spec)
|
81 |
+
|
82 |
+
return spec
|
third_party/Matcha-TTS/matcha/utils/logging_utils.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict
|
2 |
+
|
3 |
+
from lightning.pytorch.utilities import rank_zero_only
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
|
6 |
+
from matcha.utils import pylogger
|
7 |
+
|
8 |
+
log = pylogger.get_pylogger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
@rank_zero_only
|
12 |
+
def log_hyperparameters(object_dict: Dict[str, Any]) -> None:
|
13 |
+
"""Controls which config parts are saved by Lightning loggers.
|
14 |
+
|
15 |
+
Additionally saves:
|
16 |
+
- Number of model parameters
|
17 |
+
|
18 |
+
:param object_dict: A dictionary containing the following objects:
|
19 |
+
- `"cfg"`: A DictConfig object containing the main config.
|
20 |
+
- `"model"`: The Lightning model.
|
21 |
+
- `"trainer"`: The Lightning trainer.
|
22 |
+
"""
|
23 |
+
hparams = {}
|
24 |
+
|
25 |
+
cfg = OmegaConf.to_container(object_dict["cfg"])
|
26 |
+
model = object_dict["model"]
|
27 |
+
trainer = object_dict["trainer"]
|
28 |
+
|
29 |
+
if not trainer.logger:
|
30 |
+
log.warning("Logger not found! Skipping hyperparameter logging...")
|
31 |
+
return
|
32 |
+
|
33 |
+
hparams["model"] = cfg["model"]
|
34 |
+
|
35 |
+
# save number of model parameters
|
36 |
+
hparams["model/params/total"] = sum(p.numel() for p in model.parameters())
|
37 |
+
hparams["model/params/trainable"] = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
38 |
+
hparams["model/params/non_trainable"] = sum(p.numel() for p in model.parameters() if not p.requires_grad)
|
39 |
+
|
40 |
+
hparams["data"] = cfg["data"]
|
41 |
+
hparams["trainer"] = cfg["trainer"]
|
42 |
+
|
43 |
+
hparams["callbacks"] = cfg.get("callbacks")
|
44 |
+
hparams["extras"] = cfg.get("extras")
|
45 |
+
|
46 |
+
hparams["task_name"] = cfg.get("task_name")
|
47 |
+
hparams["tags"] = cfg.get("tags")
|
48 |
+
hparams["ckpt_path"] = cfg.get("ckpt_path")
|
49 |
+
hparams["seed"] = cfg.get("seed")
|
50 |
+
|
51 |
+
# send hparams to all loggers
|
52 |
+
for logger in trainer.loggers:
|
53 |
+
logger.log_hyperparams(hparams)
|
third_party/Matcha-TTS/matcha/utils/monotonic_align/__init__.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from matcha.utils.monotonic_align.core import maximum_path_c
|
5 |
+
|
6 |
+
|
7 |
+
def maximum_path(value, mask):
|
8 |
+
"""Cython optimised version.
|
9 |
+
value: [b, t_x, t_y]
|
10 |
+
mask: [b, t_x, t_y]
|
11 |
+
"""
|
12 |
+
value = value * mask
|
13 |
+
device = value.device
|
14 |
+
dtype = value.dtype
|
15 |
+
value = value.data.cpu().numpy().astype(np.float32)
|
16 |
+
path = np.zeros_like(value).astype(np.int32)
|
17 |
+
mask = mask.data.cpu().numpy()
|
18 |
+
|
19 |
+
t_x_max = mask.sum(1)[:, 0].astype(np.int32)
|
20 |
+
t_y_max = mask.sum(2)[:, 0].astype(np.int32)
|
21 |
+
maximum_path_c(path, value, t_x_max, t_y_max)
|
22 |
+
return torch.from_numpy(path).to(device=device, dtype=dtype)
|
third_party/Matcha-TTS/matcha/utils/monotonic_align/core.pyx
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
cimport cython
|
4 |
+
cimport numpy as np
|
5 |
+
|
6 |
+
from cython.parallel import prange
|
7 |
+
|
8 |
+
|
9 |
+
@cython.boundscheck(False)
|
10 |
+
@cython.wraparound(False)
|
11 |
+
cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_x, int t_y, float max_neg_val) nogil:
|
12 |
+
cdef int x
|
13 |
+
cdef int y
|
14 |
+
cdef float v_prev
|
15 |
+
cdef float v_cur
|
16 |
+
cdef float tmp
|
17 |
+
cdef int index = t_x - 1
|
18 |
+
|
19 |
+
for y in range(t_y):
|
20 |
+
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
21 |
+
if x == y:
|
22 |
+
v_cur = max_neg_val
|
23 |
+
else:
|
24 |
+
v_cur = value[x, y-1]
|
25 |
+
if x == 0:
|
26 |
+
if y == 0:
|
27 |
+
v_prev = 0.
|
28 |
+
else:
|
29 |
+
v_prev = max_neg_val
|
30 |
+
else:
|
31 |
+
v_prev = value[x-1, y-1]
|
32 |
+
value[x, y] = max(v_cur, v_prev) + value[x, y]
|
33 |
+
|
34 |
+
for y in range(t_y - 1, -1, -1):
|
35 |
+
path[index, y] = 1
|
36 |
+
if index != 0 and (index == y or value[index, y-1] < value[index-1, y-1]):
|
37 |
+
index = index - 1
|
38 |
+
|
39 |
+
|
40 |
+
@cython.boundscheck(False)
|
41 |
+
@cython.wraparound(False)
|
42 |
+
cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_xs, int[::1] t_ys, float max_neg_val=-1e9) nogil:
|
43 |
+
cdef int b = values.shape[0]
|
44 |
+
|
45 |
+
cdef int i
|
46 |
+
for i in prange(b, nogil=True):
|
47 |
+
maximum_path_each(paths[i], values[i], t_xs[i], t_ys[i], max_neg_val)
|
third_party/Matcha-TTS/matcha/utils/pylogger.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
from lightning.pytorch.utilities import rank_zero_only
|
4 |
+
|
5 |
+
|
6 |
+
def get_pylogger(name: str = __name__) -> logging.Logger:
|
7 |
+
"""Initializes a multi-GPU-friendly python command line logger.
|
8 |
+
|
9 |
+
:param name: The name of the logger, defaults to ``__name__``.
|
10 |
+
|
11 |
+
:return: A logger object.
|
12 |
+
"""
|
13 |
+
logger = logging.getLogger(name)
|
14 |
+
|
15 |
+
# this ensures all logging levels get marked with the rank zero decorator
|
16 |
+
# otherwise logs would get multiplied for each GPU process in multi-GPU setup
|
17 |
+
logging_levels = ("debug", "info", "warning", "error", "exception", "fatal", "critical")
|
18 |
+
for level in logging_levels:
|
19 |
+
setattr(logger, level, rank_zero_only(getattr(logger, level)))
|
20 |
+
|
21 |
+
return logger
|
third_party/Matcha-TTS/notebooks/.gitkeep
ADDED
File without changes
|
third_party/Matcha-TTS/scripts/schedule.sh
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Schedule execution of many runs
|
3 |
+
# Run from root folder with: bash scripts/schedule.sh
|
4 |
+
|
5 |
+
python src/train.py trainer.max_epochs=5 logger=csv
|
6 |
+
|
7 |
+
python src/train.py trainer.max_epochs=10 logger=csv
|
tools/extract_embedding.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import argparse
|
16 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
17 |
+
import onnxruntime
|
18 |
+
import torch
|
19 |
+
import torchaudio
|
20 |
+
import torchaudio.compliance.kaldi as kaldi
|
21 |
+
from tqdm import tqdm
|
22 |
+
|
23 |
+
|
24 |
+
def single_job(utt):
|
25 |
+
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
26 |
+
if sample_rate != 16000:
|
27 |
+
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
28 |
+
feat = kaldi.fbank(audio,
|
29 |
+
num_mel_bins=80,
|
30 |
+
dither=0,
|
31 |
+
sample_frequency=16000)
|
32 |
+
feat = feat - feat.mean(dim=0, keepdim=True)
|
33 |
+
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
34 |
+
return utt, embedding
|
35 |
+
|
36 |
+
|
37 |
+
def main(args):
|
38 |
+
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
39 |
+
utt2embedding, spk2embedding = {}, {}
|
40 |
+
for future in tqdm(as_completed(all_task)):
|
41 |
+
utt, embedding = future.result()
|
42 |
+
utt2embedding[utt] = embedding
|
43 |
+
spk = utt2spk[utt]
|
44 |
+
if spk not in spk2embedding:
|
45 |
+
spk2embedding[spk] = []
|
46 |
+
spk2embedding[spk].append(embedding)
|
47 |
+
for k, v in spk2embedding.items():
|
48 |
+
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
49 |
+
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
50 |
+
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
51 |
+
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
parser = argparse.ArgumentParser()
|
55 |
+
parser.add_argument("--dir", type=str)
|
56 |
+
parser.add_argument("--onnx_path", type=str)
|
57 |
+
parser.add_argument("--num_thread", type=int, default=8)
|
58 |
+
args = parser.parse_args()
|
59 |
+
|
60 |
+
utt2wav, utt2spk = {}, {}
|
61 |
+
with open('{}/wav.scp'.format(args.dir)) as f:
|
62 |
+
for l in f:
|
63 |
+
l = l.replace('\n', '').split()
|
64 |
+
utt2wav[l[0]] = l[1]
|
65 |
+
with open('{}/utt2spk'.format(args.dir)) as f:
|
66 |
+
for l in f:
|
67 |
+
l = l.replace('\n', '').split()
|
68 |
+
utt2spk[l[0]] = l[1]
|
69 |
+
|
70 |
+
option = onnxruntime.SessionOptions()
|
71 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
72 |
+
option.intra_op_num_threads = 1
|
73 |
+
providers = ["CPUExecutionProvider"]
|
74 |
+
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
75 |
+
executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
76 |
+
|
77 |
+
main(args)
|
tools/extract_speech_token.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import argparse
|
16 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
17 |
+
import logging
|
18 |
+
import torch
|
19 |
+
from tqdm import tqdm
|
20 |
+
import onnxruntime
|
21 |
+
import numpy as np
|
22 |
+
import torchaudio
|
23 |
+
import whisper
|
24 |
+
|
25 |
+
|
26 |
+
def single_job(utt):
|
27 |
+
audio, sample_rate = torchaudio.load(utt2wav[utt], backend='soundfile')
|
28 |
+
if sample_rate != 16000:
|
29 |
+
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
30 |
+
# Convert audio to mono
|
31 |
+
if audio.shape[0] > 1:
|
32 |
+
audio = audio.mean(dim=0, keepdim=True)
|
33 |
+
if audio.shape[1] / 16000 > 30:
|
34 |
+
logging.warning('do not support extract speech token for audio longer than 30s')
|
35 |
+
speech_token = []
|
36 |
+
else:
|
37 |
+
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
|
38 |
+
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
39 |
+
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
40 |
+
return utt, speech_token
|
41 |
+
|
42 |
+
|
43 |
+
def main(args):
|
44 |
+
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
45 |
+
utt2speech_token = {}
|
46 |
+
for future in tqdm(as_completed(all_task)):
|
47 |
+
utt, speech_token = future.result()
|
48 |
+
utt2speech_token[utt] = speech_token
|
49 |
+
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
|
50 |
+
|
51 |
+
|
52 |
+
if __name__ == "__main__":
|
53 |
+
parser = argparse.ArgumentParser()
|
54 |
+
parser.add_argument("--dir", type=str)
|
55 |
+
parser.add_argument("--onnx_path", type=str)
|
56 |
+
parser.add_argument("--num_thread", type=int, default=8)
|
57 |
+
args = parser.parse_args()
|
58 |
+
|
59 |
+
utt2wav = {}
|
60 |
+
with open('{}/wav.scp'.format(args.dir)) as f:
|
61 |
+
for l in f:
|
62 |
+
l = l.replace('\n', '').split()
|
63 |
+
utt2wav[l[0]] = l[1]
|
64 |
+
|
65 |
+
option = onnxruntime.SessionOptions()
|
66 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
67 |
+
option.intra_op_num_threads = 1
|
68 |
+
providers = ["CUDAExecutionProvider"]
|
69 |
+
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
70 |
+
executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
71 |
+
|
72 |
+
main(args)
|
tools/make_parquet_list.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import argparse
|
16 |
+
import logging
|
17 |
+
import os
|
18 |
+
import json
|
19 |
+
from tqdm import tqdm
|
20 |
+
import pandas as pd
|
21 |
+
import multiprocessing
|
22 |
+
import time
|
23 |
+
import torch
|
24 |
+
|
25 |
+
|
26 |
+
def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
|
27 |
+
start_time = time.time()
|
28 |
+
data_list = []
|
29 |
+
for utt in tqdm(utt_list):
|
30 |
+
data = open(utt2wav[utt], 'rb').read()
|
31 |
+
data_list.append(data)
|
32 |
+
wav_list = [utt2wav[utt] for utt in utt_list]
|
33 |
+
text_list = [utt2text[utt] for utt in utt_list]
|
34 |
+
spk_list = [utt2spk[utt] for utt in utt_list]
|
35 |
+
uttembedding_list = [utt2embedding[utt] for utt in utt_list]
|
36 |
+
spkembedding_list = [spk2embedding[utt2spk[utt]] for utt in utt_list]
|
37 |
+
speech_token_list = [utt2speech_token[utt] for utt in utt_list]
|
38 |
+
|
39 |
+
# 保存到parquet,utt2parquet_file,spk2parquet_file
|
40 |
+
df = pd.DataFrame()
|
41 |
+
df['utt'] = utt_list
|
42 |
+
df['wav'] = wav_list
|
43 |
+
df['audio_data'] = data_list
|
44 |
+
df['text'] = text_list
|
45 |
+
df['spk'] = spk_list
|
46 |
+
df['utt_embedding'] = uttembedding_list
|
47 |
+
df['spk_embedding'] = spkembedding_list
|
48 |
+
df['speech_token'] = speech_token_list
|
49 |
+
df.to_parquet(parquet_file)
|
50 |
+
with open(utt2parquet_file, 'w') as f:
|
51 |
+
json.dump({k: parquet_file for k in utt_list}, f, ensure_ascii=False, indent=2)
|
52 |
+
with open(spk2parquet_file, 'w') as f:
|
53 |
+
json.dump({k: parquet_file for k in list(set(spk_list))}, f, ensure_ascii=False, indent=2)
|
54 |
+
logging.info('spend time {}'.format(time.time() - start_time))
|
55 |
+
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
parser = argparse.ArgumentParser()
|
59 |
+
parser.add_argument('--num_utts_per_parquet',
|
60 |
+
type=int,
|
61 |
+
default=1000,
|
62 |
+
help='num utts per parquet')
|
63 |
+
parser.add_argument('--num_processes',
|
64 |
+
type=int,
|
65 |
+
default=1,
|
66 |
+
help='num processes for make parquets')
|
67 |
+
parser.add_argument('--src_dir',
|
68 |
+
type=str)
|
69 |
+
parser.add_argument('--des_dir',
|
70 |
+
type=str)
|
71 |
+
args = parser.parse_args()
|
72 |
+
|
73 |
+
utt2wav, utt2text, utt2spk = {}, {}, {}
|
74 |
+
with open('{}/wav.scp'.format(args.src_dir)) as f:
|
75 |
+
for l in f:
|
76 |
+
l = l.replace('\n', '').split()
|
77 |
+
utt2wav[l[0]] = l[1]
|
78 |
+
with open('{}/text'.format(args.src_dir)) as f:
|
79 |
+
for l in f:
|
80 |
+
l = l.replace('\n', '').split()
|
81 |
+
utt2text[l[0]] = ' '.join(l[1:])
|
82 |
+
with open('{}/utt2spk'.format(args.src_dir)) as f:
|
83 |
+
for l in f:
|
84 |
+
l = l.replace('\n', '').split()
|
85 |
+
utt2spk[l[0]] = l[1]
|
86 |
+
utt2embedding = torch.load('{}/utt2embedding.pt'.format(args.src_dir))
|
87 |
+
spk2embedding = torch.load('{}/spk2embedding.pt'.format(args.src_dir))
|
88 |
+
utt2speech_token = torch.load('{}/utt2speech_token.pt'.format(args.src_dir))
|
89 |
+
utts = list(utt2wav.keys())
|
90 |
+
|
91 |
+
# Using process pool to speedup
|
92 |
+
pool = multiprocessing.Pool(processes=args.num_processes)
|
93 |
+
parquet_list, utt2parquet_list, spk2parquet_list = [], [], []
|
94 |
+
for i, j in enumerate(range(0, len(utts), args.num_utts_per_parquet)):
|
95 |
+
parquet_file = os.path.join(args.des_dir, 'parquet_{:09d}.tar'.format(i))
|
96 |
+
utt2parquet_file = os.path.join(args.des_dir, 'utt2parquet_{:09d}.json'.format(i))
|
97 |
+
spk2parquet_file = os.path.join(args.des_dir, 'spk2parquet_{:09d}.json'.format(i))
|
98 |
+
parquet_list.append(parquet_file)
|
99 |
+
utt2parquet_list.append(utt2parquet_file)
|
100 |
+
spk2parquet_list.append(spk2parquet_file)
|
101 |
+
pool.apply_async(job, (utts[j: j + args.num_utts_per_parquet], parquet_file, utt2parquet_file, spk2parquet_file))
|
102 |
+
pool.close()
|
103 |
+
pool.join()
|
104 |
+
|
105 |
+
with open('{}/data.list'.format(args.des_dir), 'w', encoding='utf8') as f1, \
|
106 |
+
open('{}/utt2data.list'.format(args.des_dir), 'w', encoding='utf8') as f2, \
|
107 |
+
open('{}/spk2data.list'.format(args.des_dir), 'w', encoding='utf8') as f3:
|
108 |
+
for name in parquet_list:
|
109 |
+
f1.write(name + '\n')
|
110 |
+
for name in utt2parquet_list:
|
111 |
+
f2.write(name + '\n')
|
112 |
+
for name in spk2parquet_list:
|
113 |
+
f3.write(name + '\n')
|