|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import torchaudio |
|
import logging |
|
logging.getLogger('matplotlib').setLevel(logging.WARNING) |
|
logging.basicConfig(level=logging.DEBUG, |
|
format='%(asctime)s %(levelname)s %(message)s') |
|
|
|
|
|
def read_lists(list_file): |
|
lists = [] |
|
with open(list_file, 'r', encoding='utf8') as fin: |
|
for line in fin: |
|
lists.append(line.strip()) |
|
return lists |
|
|
|
|
|
def read_json_lists(list_file): |
|
lists = read_lists(list_file) |
|
results = {} |
|
for fn in lists: |
|
with open(fn, 'r', encoding='utf8') as fin: |
|
results.update(json.load(fin)) |
|
return results |
|
|
|
|
|
def load_wav(wav, target_sr): |
|
speech, sample_rate = torchaudio.load(wav, backend='soundfile') |
|
speech = speech.mean(dim=0, keepdim=True) |
|
if sample_rate != target_sr: |
|
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr) |
|
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech) |
|
return speech |
|
|
|
|
|
def convert_onnx_to_trt(trt_model, onnx_model, fp16): |
|
import tensorrt as trt |
|
_min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)] |
|
_opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)] |
|
_max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)] |
|
input_names = ["x", "mask", "mu", "t", "spks", "cond"] |
|
|
|
logging.info("Converting onnx to trt...") |
|
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) |
|
logger = trt.Logger(trt.Logger.INFO) |
|
builder = trt.Builder(logger) |
|
network = builder.create_network(network_flags) |
|
parser = trt.OnnxParser(network, logger) |
|
config = builder.create_builder_config() |
|
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 33) |
|
if fp16: |
|
config.set_flag(trt.BuilderFlag.FP16) |
|
profile = builder.create_optimization_profile() |
|
|
|
with open(onnx_model, "rb") as f: |
|
if not parser.parse(f.read()): |
|
for error in range(parser.num_errors): |
|
print(parser.get_error(error)) |
|
raise ValueError('failed to parse {}'.format(onnx_model)) |
|
|
|
for i in range(len(input_names)): |
|
profile.set_shape(input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i]) |
|
tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT |
|
|
|
for i in range(network.num_inputs): |
|
input_tensor = network.get_input(i) |
|
input_tensor.dtype = tensor_dtype |
|
for i in range(network.num_outputs): |
|
output_tensor = network.get_output(i) |
|
output_tensor.dtype = tensor_dtype |
|
config.add_optimization_profile(profile) |
|
engine_bytes = builder.build_serialized_network(network, config) |
|
|
|
with open(trt_model, "wb") as f: |
|
f.write(engine_bytes) |
|
|