|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Unility functions for Transformer.""" |
|
|
|
import random |
|
from typing import List |
|
|
|
import numpy as np |
|
import torch |
|
|
|
IGNORE_ID = -1 |
|
|
|
|
|
def pad_list(xs: List[torch.Tensor], pad_value: int): |
|
"""Perform padding for the list of tensors. |
|
|
|
Args: |
|
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)]. |
|
pad_value (float): Value for padding. |
|
|
|
Returns: |
|
Tensor: Padded tensor (B, Tmax, `*`). |
|
|
|
Examples: |
|
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)] |
|
>>> x |
|
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])] |
|
>>> pad_list(x, 0) |
|
tensor([[1., 1., 1., 1.], |
|
[1., 1., 0., 0.], |
|
[1., 0., 0., 0.]]) |
|
|
|
""" |
|
max_len = max([len(item) for item in xs]) |
|
batchs = len(xs) |
|
ndim = xs[0].ndim |
|
if ndim == 1: |
|
pad_res = torch.zeros(batchs, |
|
max_len, |
|
dtype=xs[0].dtype, |
|
device=xs[0].device) |
|
elif ndim == 2: |
|
pad_res = torch.zeros(batchs, |
|
max_len, |
|
xs[0].shape[1], |
|
dtype=xs[0].dtype, |
|
device=xs[0].device) |
|
elif ndim == 3: |
|
pad_res = torch.zeros(batchs, |
|
max_len, |
|
xs[0].shape[1], |
|
xs[0].shape[2], |
|
dtype=xs[0].dtype, |
|
device=xs[0].device) |
|
else: |
|
raise ValueError(f"Unsupported ndim: {ndim}") |
|
pad_res.fill_(pad_value) |
|
for i in range(batchs): |
|
pad_res[i, :len(xs[i])] = xs[i] |
|
return pad_res |
|
|
|
|
|
def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor, |
|
ignore_label: int) -> torch.Tensor: |
|
"""Calculate accuracy. |
|
|
|
Args: |
|
pad_outputs (Tensor): Prediction tensors (B * Lmax, D). |
|
pad_targets (LongTensor): Target label tensors (B, Lmax). |
|
ignore_label (int): Ignore label id. |
|
|
|
Returns: |
|
torch.Tensor: Accuracy value (0.0 - 1.0). |
|
|
|
""" |
|
pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1), |
|
pad_outputs.size(1)).argmax(2) |
|
mask = pad_targets != ignore_label |
|
numerator = torch.sum( |
|
pad_pred.masked_select(mask) == pad_targets.masked_select(mask)) |
|
denominator = torch.sum(mask) |
|
return (numerator / denominator).detach() |
|
|
|
|
|
def get_padding(kernel_size, dilation=1): |
|
return int((kernel_size * dilation - dilation) / 2) |
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01): |
|
classname = m.__class__.__name__ |
|
if classname.find("Conv") != -1: |
|
m.weight.data.normal_(mean, std) |
|
|
|
|
|
|
|
def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1): |
|
top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k) |
|
rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item() |
|
if rep_num >= win_size * tau_r: |
|
top_ids = random_sampling(weighted_scores, decoded_tokens, sampling) |
|
return top_ids |
|
|
|
|
|
def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25): |
|
prob, indices = [], [] |
|
cum_prob = 0.0 |
|
sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True) |
|
for i in range(len(sorted_idx)): |
|
|
|
if cum_prob < top_p and len(prob) < top_k: |
|
cum_prob += sorted_value[i] |
|
prob.append(sorted_value[i]) |
|
indices.append(sorted_idx[i]) |
|
else: |
|
break |
|
prob = torch.tensor(prob).to(weighted_scores) |
|
indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device) |
|
top_ids = indices[prob.multinomial(1, replacement=True)] |
|
return top_ids |
|
|
|
|
|
def random_sampling(weighted_scores, decoded_tokens, sampling): |
|
top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True) |
|
return top_ids |
|
|
|
|
|
def fade_in_out(fade_in_mel, fade_out_mel, window): |
|
device = fade_in_mel.device |
|
fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu() |
|
mel_overlap_len = int(window.shape[0] / 2) |
|
if fade_in_mel.device == torch.device('cpu'): |
|
fade_in_mel = fade_in_mel.clone() |
|
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \ |
|
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:] |
|
return fade_in_mel.to(device) |
|
|
|
|
|
def set_all_random_seed(seed): |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor: |
|
assert mask.dtype == torch.bool |
|
assert dtype in [torch.float32, torch.bfloat16, torch.float16] |
|
mask = mask.to(dtype) |
|
|
|
|
|
|
|
mask = (1.0 - mask) * -1.0e+10 |
|
return mask |
|
|