kevinqu0820
commited on
Commit
•
e925703
1
Parent(s):
f5b9a42
Upload PPO LunarLander-v23 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 281.49 +/- 21.39
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f627f6fd510>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f627f6fd5a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f627f6fd630>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f627f6fd6c0>", "_build": "<function ActorCriticPolicy._build at 0x7f627f6fd750>", "forward": "<function ActorCriticPolicy.forward at 0x7f627f6fd7e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f627f6fd870>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f627f6fd900>", "_predict": "<function ActorCriticPolicy._predict at 0x7f627f6fd990>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f627f6fda20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f627f6fdab0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f627f6fdb40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f627f704040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696598657461561813, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGA7W750CLq8rJWquyw/DLr8NyQ+1nzaOgAAgD8AAIA/muR5vWJgqD92uzi+oIr6vqdIqr2Fihg9AAAAAAAAAADNFGw8KRh6uvpSKTm7N640h3GuOs8GQrgAAIA/AACAP+Yxzj2DfVU/XzkEPb594r6PThM+hU5+vQAAAAAAAAAA2uMPvgqp7D41fKs8oImevlhX2bzzWVq8AAAAAAAAAAAA3JI8w2U4Of4hijv/Q4M8fKCNOTyLhTsAAAAAAAAAAAAzPr22lTW8kdtBPttzRr5ZK1W76nXovAAAgD8AAIA/msmKu7ayuD/Gjk29BMBVPbXvmbzOA6m8AAAAAAAAAADQ/pG+MENpP/XHbL2S0Na+PleCvpwNQT4AAAAAAAAAALOEMb3pMhK8B2CJPVTWPjzOkXu94NMePQAAgD8AAIA/Zq1BPWPRtz9SNoY+FpsXvvuYmj1s5wk+AAAAAAAAAABmnh4+cBQ3PzjEN73AGNy+gfulPWh1fL0AAAAAAAAAADMfvrxSpOS7+n+fO5NGkTw+nzc9YFd0vQAAgD8AAIA/GrIPPvEDGj9B/4K9s9bKvkMuGj3+jCG+AAAAAAAAAAAAyrs99nQuuttn0zraca01ZgGpOlMW+7kAAIA/AAAAAKaIoj0V810+E2GcvCZIlL4q2d48MJ+YvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGLtgnc+JSMAWyUS+yMAXSUR0CdLLn2qT8pdX2UKGgGR0BwfYNDtw71aAdNBwFoCEdAnS0tm+TNdXV9lChoBkdAcwPsQNCqqGgHTWUBaAhHQJ0t+x2St/51fZQoaAZHQG8BAXMyJsRoB0vpaAhHQJ0uIxzq8lJ1fZQoaAZHQHJV48p1A7hoB0v2aAhHQJ0vdpGnXNF1fZQoaAZHQHCIazzErG1oB00LAWgIR0CdL7Du0CzUdX2UKGgGR0BwpaRjjJdTaAdNHQFoCEdAnTJvQfIS13V9lChoBkdAcaoD8+A3DWgHTQkBaAhHQJ0zQvXbudB1fZQoaAZHQHFN2/BWPtFoB00TAWgIR0CdNsTzundgdX2UKGgGR0BwsrjFQ2uQaAdNLgFoCEdAnTb+Cwr1/XV9lChoBkdAcx4lqJuVHGgHTQQBaAhHQJ03G7Wd3B51fZQoaAZHQHAYO1KGtZFoB00cAWgIR0CdNzhDw6QvdX2UKGgGR0BxXe9oN/e+aAdL7WgIR0CdOLwGW2PUdX2UKGgGR0BzNOCjDbaiaAdNDQFoCEdAnTja6asp5XV9lChoBkdAcNOLYwqRU2gHTQMBaAhHQJ05KKEWZZ11fZQoaAZHQG8wkDIRywRoB00gAWgIR0CdOgvlU6xPdX2UKGgGR0Bw9yjzqbBoaAdNDQFoCEdAnTqGaDwpfHV9lChoBkdAcShGSZBsymgHS/loCEdAnTr2UwBYFXV9lChoBkdAYaTo11nuiWgHTegDaAhHQJ07LvMKTjh1fZQoaAZHQHDT7d8Aq/doB00sAWgIR0CdO48cuJ1rdX2UKGgGR0BzJCRT0g8saAdNEAFoCEdAnTuiSq2jPHV9lChoBkdAca0kfcN6PmgHTQ0BaAhHQJ09TmfXf651fZQoaAZHQHHNTxwyZa5oB00CAWgIR0CdPXMuvlltdX2UKGgGR0Bw/30oScslaAdL22gIR0CdPhDK5kLAdX2UKGgGR0BywV9F4LThaAdNBAFoCEdAnT+eizsyBXV9lChoBkdAcniYDTz/ZWgHTQQBaAhHQJ0/tqCYkVx1fZQoaAZHQHEXrk0aZQZoB0vXaAhHQJ0/zybx3FF1fZQoaAZHQG+8OAy2x6hoB00NAWgIR0CdP9D1oQFtdX2UKGgGR0Bx+lx//echaAdNBgNoCEdAnUAZ22XsxHV9lChoBkdAcsHsuWa+e2gHS/VoCEdAnUCGrsByS3V9lChoBkdAcLc1M/QjU2gHTQwBaAhHQJ1Bh7dBSk11fZQoaAZHQHDeTV6NVBFoB0vmaAhHQJ1BmElE7XB1fZQoaAZHQHJV2hdt2s9oB0v9aAhHQJ1B115jYqZ1fZQoaAZHQHDYXZ00WM1oB0vraAhHQJ1Ciw1R+Bp1fZQoaAZHQHLRfub7TDxoB00QAWgIR0CdQwWO6unudX2UKGgGR0ByNdFWn0kGaAdNIQFoCEdAnUOrKmsNlXV9lChoBkdAcA3jR2KVIWgHTVABaAhHQJ1Fd32VVxV1fZQoaAZHQHCOrMC9ytFoB0v8aAhHQJ1FdTDO1OV1fZQoaAZHQHNVFM/QjUxoB00eAWgIR0CdRd0EX+ERdX2UKGgGR0BzEC77Kq4paAdNLwFoCEdAnUY+F+NLlHV9lChoBkdAcV/QRwqAjWgHS+1oCEdAnUZ5udf9gnV9lChoBkdAbZMhAWznimgHS/9oCEdAnUczK9wm3XV9lChoBkdAcZRHIIWxhWgHTQoBaAhHQJ1Yet0V8Cx1fZQoaAZHQHMUx6fJ3gVoB00NAWgIR0CdWHqWC2+gdX2UKGgGR0BxVl4lhPTHaAdNHwFoCEdAnVlor4Fia3V9lChoBkdAciL3ueBg/mgHS+poCEdAnVljlYEGJXV9lChoBkdAcFljMmnfmGgHTQEBaAhHQJ1aGBtk4FR1fZQoaAZHQG1v4FRpDeFoB0vxaAhHQJ1asQAdXDF1fZQoaAZHQHD7Q2VE/jdoB00jAWgIR0CdW2yRB/qgdX2UKGgGR0BxELQjUutfaAdL/GgIR0CdW53nIQvpdX2UKGgGR0BxWFrbg0j1aAdNDwFoCEdAnVz1Au7HyXV9lChoBkdAcQsKD0163WgHS/1oCEdAnV5cZP2wmnV9lChoBkdAcojANXo1UGgHTQoBaAhHQJ1e0WrOqvN1fZQoaAZHQG7266BiCrdoB00PAWgIR0CdYOSxqwhXdX2UKGgGR0ByRvrIHTqjaAdL9GgIR0CdYVbJwKjSdX2UKGgGR0BvhFCiRGMGaAdNJwFoCEdAnWHFdHDrJXV9lChoBkdAb5Q3++/QB2gHS+JoCEdAnWH2BjFyaXV9lChoBkdAcQ5zIFNcnmgHTTwBaAhHQJ1iKGmDUVl1fZQoaAZHQHBhDV+Zw4toB00VAWgIR0CdYlxsEaESdX2UKGgGR0BxntSeiBXkaAdNCQFoCEdAnWJYAXEZSHV9lChoBkdAcaar1M/QjWgHS/toCEdAnWL9IGyHEnV9lChoBkdAcbpRwZOzp2gHS/BoCEdAnWRgh0QsgHV9lChoBkdAcW69Nvfj0mgHTR4BaAhHQJ1lgq9XcQB1fZQoaAZHQHA7yVrylN1oB0v3aAhHQJ1l7d8Aq/d1fZQoaAZHQHIMHhCMPz5oB00UAWgIR0CdZuEpAlfJdX2UKGgGR0ByzV9QXQ+maAdNGAFoCEdAnWkwhfShJ3V9lChoBkdAckmTYdyT6mgHS/9oCEdAnWqsBIWgvnV9lChoBkdAcJ0ePJaJRGgHS+1oCEdAnWvO717IDHV9lChoBkdActm0PpY9xWgHTQYBaAhHQJ1txOgxrSF1fZQoaAZHQHAilkYoAn5oB00BAWgIR0CdbfW2PT5PdX2UKGgGR0Bw21Zs9B8haAdL+WgIR0CdbjnU2DQJdX2UKGgGR0ByAOqo60Y1aAdL+mgIR0Cdbkz8gpz+dX2UKGgGR0BvRmJiy6czaAdL+2gIR0CdbyqD9OyndX2UKGgGR0By4SiAUcn3aAdNGgFoCEdAnW+4kE9t/HV9lChoBkdAcMigmqo60mgHS+hoCEdAnW/k9Mbm2nV9lChoBkdAbOjhuO0b+GgHS+xoCEdAnXFtc4YJmnV9lChoBkdAcTTYNiH6/WgHTRwBaAhHQJ10lHXmNip1fZQoaAZHQHDZShvitJZoB02PAWgIR0CddbiADq4ZdX2UKGgGR0BwffPX05EMaAdNIAFoCEdAnXYUFW4mTnV9lChoBkdAcFxgTRIBimgHS/doCEdAnXfEliSaE3V9lChoBkdAcLH5TIeYD2gHTRUBaAhHQJ133HS4OMF1fZQoaAZHQErfVktmL+BoB0umaAhHQJ14GVfNRm91fZQoaAZHQHCP4y0rsjVoB0v7aAhHQJ14nnQpnYh1fZQoaAZHQHBvvChvitJoB0vsaAhHQJ15jKYAsCl1fZQoaAZHQGKvAG0NSZVoB03oA2gIR0Cdee8CxNZedX2UKGgGR0BwZ14IKMNuaAdL/mgIR0CdeevH93r2dX2UKGgGR0BwrNHrhR64aAdNBQFoCEdAnXppckdFOXV9lChoBkdAbQrokiUxEmgHS/BoCEdAnXqwzpHI63V9lChoBkdAcBRZxJd0JWgHTQcBaAhHQJ167PcBU711fZQoaAZHQHHleivgWJtoB00kAWgIR0Cdex8IzFdcdX2UKGgGR0BwoZ4fOlfraAdL/2gIR0Cde+2xptaZdX2UKGgGR0BwFxhw2l2vaAdL/GgIR0CdfYuctoSMdX2UKGgGR0BymkRAbADaaAdNBQFoCEdAnX6E6gdwN3V9lChoBkdAcpCDHOryUmgHTRYBaAhHQJ1/V1uBMBZ1fZQoaAZHQHDfsrmQr+ZoB0vnaAhHQJ1/WCQLeAN1fZQoaAZHQHAm0yHmA9VoB0v3aAhHQJ1/kgKWszV1fZQoaAZHQHDBzh99c8loB0v0aAhHQJ1/jXGwRoR1fZQoaAZHQHCnQ7gbZOBoB00FAWgIR0CdgMcBEKE4dX2UKGgGR0ByCciMYMvzaAdL82gIR0CdgWc0tRNzdX2UKGgGR0BwPo7yQPqcaAdL+2gIR0Cdga7qIJqqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 288, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96c97b2c7c779e8e760337972fb2e08ea1d4ab57a5b9df2c569865d28b451760
|
3 |
+
size 146699
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f627f6fd510>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f627f6fd5a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f627f6fd630>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f627f6fd6c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f627f6fd750>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f627f6fd7e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f627f6fd870>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f627f6fd900>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f627f6fd990>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f627f6fda20>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f627f6fdab0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f627f6fdb40>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f627f704040>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1696598657461561813,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGA7W750CLq8rJWquyw/DLr8NyQ+1nzaOgAAgD8AAIA/muR5vWJgqD92uzi+oIr6vqdIqr2Fihg9AAAAAAAAAADNFGw8KRh6uvpSKTm7N640h3GuOs8GQrgAAIA/AACAP+Yxzj2DfVU/XzkEPb594r6PThM+hU5+vQAAAAAAAAAA2uMPvgqp7D41fKs8oImevlhX2bzzWVq8AAAAAAAAAAAA3JI8w2U4Of4hijv/Q4M8fKCNOTyLhTsAAAAAAAAAAAAzPr22lTW8kdtBPttzRr5ZK1W76nXovAAAgD8AAIA/msmKu7ayuD/Gjk29BMBVPbXvmbzOA6m8AAAAAAAAAADQ/pG+MENpP/XHbL2S0Na+PleCvpwNQT4AAAAAAAAAALOEMb3pMhK8B2CJPVTWPjzOkXu94NMePQAAgD8AAIA/Zq1BPWPRtz9SNoY+FpsXvvuYmj1s5wk+AAAAAAAAAABmnh4+cBQ3PzjEN73AGNy+gfulPWh1fL0AAAAAAAAAADMfvrxSpOS7+n+fO5NGkTw+nzc9YFd0vQAAgD8AAIA/GrIPPvEDGj9B/4K9s9bKvkMuGj3+jCG+AAAAAAAAAAAAyrs99nQuuttn0zraca01ZgGpOlMW+7kAAIA/AAAAAKaIoj0V810+E2GcvCZIlL4q2d48MJ+YvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVGQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGLtgnc+JSMAWyUS+yMAXSUR0CdLLn2qT8pdX2UKGgGR0BwfYNDtw71aAdNBwFoCEdAnS0tm+TNdXV9lChoBkdAcwPsQNCqqGgHTWUBaAhHQJ0t+x2St/51fZQoaAZHQG8BAXMyJsRoB0vpaAhHQJ0uIxzq8lJ1fZQoaAZHQHJV48p1A7hoB0v2aAhHQJ0vdpGnXNF1fZQoaAZHQHCIazzErG1oB00LAWgIR0CdL7Du0CzUdX2UKGgGR0BwpaRjjJdTaAdNHQFoCEdAnTJvQfIS13V9lChoBkdAcaoD8+A3DWgHTQkBaAhHQJ0zQvXbudB1fZQoaAZHQHFN2/BWPtFoB00TAWgIR0CdNsTzundgdX2UKGgGR0BwsrjFQ2uQaAdNLgFoCEdAnTb+Cwr1/XV9lChoBkdAcx4lqJuVHGgHTQQBaAhHQJ03G7Wd3B51fZQoaAZHQHAYO1KGtZFoB00cAWgIR0CdNzhDw6QvdX2UKGgGR0BxXe9oN/e+aAdL7WgIR0CdOLwGW2PUdX2UKGgGR0BzNOCjDbaiaAdNDQFoCEdAnTja6asp5XV9lChoBkdAcNOLYwqRU2gHTQMBaAhHQJ05KKEWZZ11fZQoaAZHQG8wkDIRywRoB00gAWgIR0CdOgvlU6xPdX2UKGgGR0Bw9yjzqbBoaAdNDQFoCEdAnTqGaDwpfHV9lChoBkdAcShGSZBsymgHS/loCEdAnTr2UwBYFXV9lChoBkdAYaTo11nuiWgHTegDaAhHQJ07LvMKTjh1fZQoaAZHQHDT7d8Aq/doB00sAWgIR0CdO48cuJ1rdX2UKGgGR0BzJCRT0g8saAdNEAFoCEdAnTuiSq2jPHV9lChoBkdAca0kfcN6PmgHTQ0BaAhHQJ09TmfXf651fZQoaAZHQHHNTxwyZa5oB00CAWgIR0CdPXMuvlltdX2UKGgGR0Bw/30oScslaAdL22gIR0CdPhDK5kLAdX2UKGgGR0BywV9F4LThaAdNBAFoCEdAnT+eizsyBXV9lChoBkdAcniYDTz/ZWgHTQQBaAhHQJ0/tqCYkVx1fZQoaAZHQHEXrk0aZQZoB0vXaAhHQJ0/zybx3FF1fZQoaAZHQG+8OAy2x6hoB00NAWgIR0CdP9D1oQFtdX2UKGgGR0Bx+lx//echaAdNBgNoCEdAnUAZ22XsxHV9lChoBkdAcsHsuWa+e2gHS/VoCEdAnUCGrsByS3V9lChoBkdAcLc1M/QjU2gHTQwBaAhHQJ1Bh7dBSk11fZQoaAZHQHDeTV6NVBFoB0vmaAhHQJ1BmElE7XB1fZQoaAZHQHJV2hdt2s9oB0v9aAhHQJ1B115jYqZ1fZQoaAZHQHDYXZ00WM1oB0vraAhHQJ1Ciw1R+Bp1fZQoaAZHQHLRfub7TDxoB00QAWgIR0CdQwWO6unudX2UKGgGR0ByNdFWn0kGaAdNIQFoCEdAnUOrKmsNlXV9lChoBkdAcA3jR2KVIWgHTVABaAhHQJ1Fd32VVxV1fZQoaAZHQHCOrMC9ytFoB0v8aAhHQJ1FdTDO1OV1fZQoaAZHQHNVFM/QjUxoB00eAWgIR0CdRd0EX+ERdX2UKGgGR0BzEC77Kq4paAdNLwFoCEdAnUY+F+NLlHV9lChoBkdAcV/QRwqAjWgHS+1oCEdAnUZ5udf9gnV9lChoBkdAbZMhAWznimgHS/9oCEdAnUczK9wm3XV9lChoBkdAcZRHIIWxhWgHTQoBaAhHQJ1Yet0V8Cx1fZQoaAZHQHMUx6fJ3gVoB00NAWgIR0CdWHqWC2+gdX2UKGgGR0BxVl4lhPTHaAdNHwFoCEdAnVlor4Fia3V9lChoBkdAciL3ueBg/mgHS+poCEdAnVljlYEGJXV9lChoBkdAcFljMmnfmGgHTQEBaAhHQJ1aGBtk4FR1fZQoaAZHQG1v4FRpDeFoB0vxaAhHQJ1asQAdXDF1fZQoaAZHQHD7Q2VE/jdoB00jAWgIR0CdW2yRB/qgdX2UKGgGR0BxELQjUutfaAdL/GgIR0CdW53nIQvpdX2UKGgGR0BxWFrbg0j1aAdNDwFoCEdAnVz1Au7HyXV9lChoBkdAcQsKD0163WgHS/1oCEdAnV5cZP2wmnV9lChoBkdAcojANXo1UGgHTQoBaAhHQJ1e0WrOqvN1fZQoaAZHQG7266BiCrdoB00PAWgIR0CdYOSxqwhXdX2UKGgGR0ByRvrIHTqjaAdL9GgIR0CdYVbJwKjSdX2UKGgGR0BvhFCiRGMGaAdNJwFoCEdAnWHFdHDrJXV9lChoBkdAb5Q3++/QB2gHS+JoCEdAnWH2BjFyaXV9lChoBkdAcQ5zIFNcnmgHTTwBaAhHQJ1iKGmDUVl1fZQoaAZHQHBhDV+Zw4toB00VAWgIR0CdYlxsEaESdX2UKGgGR0BxntSeiBXkaAdNCQFoCEdAnWJYAXEZSHV9lChoBkdAcaar1M/QjWgHS/toCEdAnWL9IGyHEnV9lChoBkdAcbpRwZOzp2gHS/BoCEdAnWRgh0QsgHV9lChoBkdAcW69Nvfj0mgHTR4BaAhHQJ1lgq9XcQB1fZQoaAZHQHA7yVrylN1oB0v3aAhHQJ1l7d8Aq/d1fZQoaAZHQHIMHhCMPz5oB00UAWgIR0CdZuEpAlfJdX2UKGgGR0ByzV9QXQ+maAdNGAFoCEdAnWkwhfShJ3V9lChoBkdAckmTYdyT6mgHS/9oCEdAnWqsBIWgvnV9lChoBkdAcJ0ePJaJRGgHS+1oCEdAnWvO717IDHV9lChoBkdActm0PpY9xWgHTQYBaAhHQJ1txOgxrSF1fZQoaAZHQHAilkYoAn5oB00BAWgIR0CdbfW2PT5PdX2UKGgGR0Bw21Zs9B8haAdL+WgIR0CdbjnU2DQJdX2UKGgGR0ByAOqo60Y1aAdL+mgIR0Cdbkz8gpz+dX2UKGgGR0BvRmJiy6czaAdL+2gIR0CdbyqD9OyndX2UKGgGR0By4SiAUcn3aAdNGgFoCEdAnW+4kE9t/HV9lChoBkdAcMigmqo60mgHS+hoCEdAnW/k9Mbm2nV9lChoBkdAbOjhuO0b+GgHS+xoCEdAnXFtc4YJmnV9lChoBkdAcTTYNiH6/WgHTRwBaAhHQJ10lHXmNip1fZQoaAZHQHDZShvitJZoB02PAWgIR0CddbiADq4ZdX2UKGgGR0BwffPX05EMaAdNIAFoCEdAnXYUFW4mTnV9lChoBkdAcFxgTRIBimgHS/doCEdAnXfEliSaE3V9lChoBkdAcLH5TIeYD2gHTRUBaAhHQJ133HS4OMF1fZQoaAZHQErfVktmL+BoB0umaAhHQJ14GVfNRm91fZQoaAZHQHCP4y0rsjVoB0v7aAhHQJ14nnQpnYh1fZQoaAZHQHBvvChvitJoB0vsaAhHQJ15jKYAsCl1fZQoaAZHQGKvAG0NSZVoB03oA2gIR0Cdee8CxNZedX2UKGgGR0BwZ14IKMNuaAdL/mgIR0CdeevH93r2dX2UKGgGR0BwrNHrhR64aAdNBQFoCEdAnXppckdFOXV9lChoBkdAbQrokiUxEmgHS/BoCEdAnXqwzpHI63V9lChoBkdAcBRZxJd0JWgHTQcBaAhHQJ167PcBU711fZQoaAZHQHHleivgWJtoB00kAWgIR0Cdex8IzFdcdX2UKGgGR0BwoZ4fOlfraAdL/2gIR0Cde+2xptaZdX2UKGgGR0BwFxhw2l2vaAdL/GgIR0CdfYuctoSMdX2UKGgGR0BymkRAbADaaAdNBQFoCEdAnX6E6gdwN3V9lChoBkdAcpCDHOryUmgHTRYBaAhHQJ1/V1uBMBZ1fZQoaAZHQHDfsrmQr+ZoB0vnaAhHQJ1/WCQLeAN1fZQoaAZHQHAm0yHmA9VoB0v3aAhHQJ1/kgKWszV1fZQoaAZHQHDBzh99c8loB0v0aAhHQJ1/jXGwRoR1fZQoaAZHQHCnQ7gbZOBoB00FAWgIR0CdgMcBEKE4dX2UKGgGR0ByCciMYMvzaAdL82gIR0CdgWc0tRNzdX2UKGgGR0BwPo7yQPqcaAdL+2gIR0Cdga7qIJqqdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 288,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fe2a61c2395fbad3008a2bcc9717654719544e596b42021593f5ca904f6000c
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b11cba89bc58c45be2725c3360ba5c2d53e5a25ba0affbaea1de90b007dfe036
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (160 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 281.494713, "std_reward": 21.393504083972164, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-06T14:00:19.589362"}
|