kevinqu0820 commited on
Commit
e925703
1 Parent(s): f5b9a42

Upload PPO LunarLander-v23 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 281.49 +/- 21.39
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f627f6fd510>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f627f6fd5a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f627f6fd630>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f627f6fd6c0>", "_build": "<function ActorCriticPolicy._build at 0x7f627f6fd750>", "forward": "<function ActorCriticPolicy.forward at 0x7f627f6fd7e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f627f6fd870>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f627f6fd900>", "_predict": "<function ActorCriticPolicy._predict at 0x7f627f6fd990>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f627f6fda20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f627f6fdab0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f627f6fdb40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f627f704040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696598657461561813, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGA7W750CLq8rJWquyw/DLr8NyQ+1nzaOgAAgD8AAIA/muR5vWJgqD92uzi+oIr6vqdIqr2Fihg9AAAAAAAAAADNFGw8KRh6uvpSKTm7N640h3GuOs8GQrgAAIA/AACAP+Yxzj2DfVU/XzkEPb594r6PThM+hU5+vQAAAAAAAAAA2uMPvgqp7D41fKs8oImevlhX2bzzWVq8AAAAAAAAAAAA3JI8w2U4Of4hijv/Q4M8fKCNOTyLhTsAAAAAAAAAAAAzPr22lTW8kdtBPttzRr5ZK1W76nXovAAAgD8AAIA/msmKu7ayuD/Gjk29BMBVPbXvmbzOA6m8AAAAAAAAAADQ/pG+MENpP/XHbL2S0Na+PleCvpwNQT4AAAAAAAAAALOEMb3pMhK8B2CJPVTWPjzOkXu94NMePQAAgD8AAIA/Zq1BPWPRtz9SNoY+FpsXvvuYmj1s5wk+AAAAAAAAAABmnh4+cBQ3PzjEN73AGNy+gfulPWh1fL0AAAAAAAAAADMfvrxSpOS7+n+fO5NGkTw+nzc9YFd0vQAAgD8AAIA/GrIPPvEDGj9B/4K9s9bKvkMuGj3+jCG+AAAAAAAAAAAAyrs99nQuuttn0zraca01ZgGpOlMW+7kAAIA/AAAAAKaIoj0V810+E2GcvCZIlL4q2d48MJ+YvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGLtgnc+JSMAWyUS+yMAXSUR0CdLLn2qT8pdX2UKGgGR0BwfYNDtw71aAdNBwFoCEdAnS0tm+TNdXV9lChoBkdAcwPsQNCqqGgHTWUBaAhHQJ0t+x2St/51fZQoaAZHQG8BAXMyJsRoB0vpaAhHQJ0uIxzq8lJ1fZQoaAZHQHJV48p1A7hoB0v2aAhHQJ0vdpGnXNF1fZQoaAZHQHCIazzErG1oB00LAWgIR0CdL7Du0CzUdX2UKGgGR0BwpaRjjJdTaAdNHQFoCEdAnTJvQfIS13V9lChoBkdAcaoD8+A3DWgHTQkBaAhHQJ0zQvXbudB1fZQoaAZHQHFN2/BWPtFoB00TAWgIR0CdNsTzundgdX2UKGgGR0BwsrjFQ2uQaAdNLgFoCEdAnTb+Cwr1/XV9lChoBkdAcx4lqJuVHGgHTQQBaAhHQJ03G7Wd3B51fZQoaAZHQHAYO1KGtZFoB00cAWgIR0CdNzhDw6QvdX2UKGgGR0BxXe9oN/e+aAdL7WgIR0CdOLwGW2PUdX2UKGgGR0BzNOCjDbaiaAdNDQFoCEdAnTja6asp5XV9lChoBkdAcNOLYwqRU2gHTQMBaAhHQJ05KKEWZZ11fZQoaAZHQG8wkDIRywRoB00gAWgIR0CdOgvlU6xPdX2UKGgGR0Bw9yjzqbBoaAdNDQFoCEdAnTqGaDwpfHV9lChoBkdAcShGSZBsymgHS/loCEdAnTr2UwBYFXV9lChoBkdAYaTo11nuiWgHTegDaAhHQJ07LvMKTjh1fZQoaAZHQHDT7d8Aq/doB00sAWgIR0CdO48cuJ1rdX2UKGgGR0BzJCRT0g8saAdNEAFoCEdAnTuiSq2jPHV9lChoBkdAca0kfcN6PmgHTQ0BaAhHQJ09TmfXf651fZQoaAZHQHHNTxwyZa5oB00CAWgIR0CdPXMuvlltdX2UKGgGR0Bw/30oScslaAdL22gIR0CdPhDK5kLAdX2UKGgGR0BywV9F4LThaAdNBAFoCEdAnT+eizsyBXV9lChoBkdAcniYDTz/ZWgHTQQBaAhHQJ0/tqCYkVx1fZQoaAZHQHEXrk0aZQZoB0vXaAhHQJ0/zybx3FF1fZQoaAZHQG+8OAy2x6hoB00NAWgIR0CdP9D1oQFtdX2UKGgGR0Bx+lx//echaAdNBgNoCEdAnUAZ22XsxHV9lChoBkdAcsHsuWa+e2gHS/VoCEdAnUCGrsByS3V9lChoBkdAcLc1M/QjU2gHTQwBaAhHQJ1Bh7dBSk11fZQoaAZHQHDeTV6NVBFoB0vmaAhHQJ1BmElE7XB1fZQoaAZHQHJV2hdt2s9oB0v9aAhHQJ1B115jYqZ1fZQoaAZHQHDYXZ00WM1oB0vraAhHQJ1Ciw1R+Bp1fZQoaAZHQHLRfub7TDxoB00QAWgIR0CdQwWO6unudX2UKGgGR0ByNdFWn0kGaAdNIQFoCEdAnUOrKmsNlXV9lChoBkdAcA3jR2KVIWgHTVABaAhHQJ1Fd32VVxV1fZQoaAZHQHCOrMC9ytFoB0v8aAhHQJ1FdTDO1OV1fZQoaAZHQHNVFM/QjUxoB00eAWgIR0CdRd0EX+ERdX2UKGgGR0BzEC77Kq4paAdNLwFoCEdAnUY+F+NLlHV9lChoBkdAcV/QRwqAjWgHS+1oCEdAnUZ5udf9gnV9lChoBkdAbZMhAWznimgHS/9oCEdAnUczK9wm3XV9lChoBkdAcZRHIIWxhWgHTQoBaAhHQJ1Yet0V8Cx1fZQoaAZHQHMUx6fJ3gVoB00NAWgIR0CdWHqWC2+gdX2UKGgGR0BxVl4lhPTHaAdNHwFoCEdAnVlor4Fia3V9lChoBkdAciL3ueBg/mgHS+poCEdAnVljlYEGJXV9lChoBkdAcFljMmnfmGgHTQEBaAhHQJ1aGBtk4FR1fZQoaAZHQG1v4FRpDeFoB0vxaAhHQJ1asQAdXDF1fZQoaAZHQHD7Q2VE/jdoB00jAWgIR0CdW2yRB/qgdX2UKGgGR0BxELQjUutfaAdL/GgIR0CdW53nIQvpdX2UKGgGR0BxWFrbg0j1aAdNDwFoCEdAnVz1Au7HyXV9lChoBkdAcQsKD0163WgHS/1oCEdAnV5cZP2wmnV9lChoBkdAcojANXo1UGgHTQoBaAhHQJ1e0WrOqvN1fZQoaAZHQG7266BiCrdoB00PAWgIR0CdYOSxqwhXdX2UKGgGR0ByRvrIHTqjaAdL9GgIR0CdYVbJwKjSdX2UKGgGR0BvhFCiRGMGaAdNJwFoCEdAnWHFdHDrJXV9lChoBkdAb5Q3++/QB2gHS+JoCEdAnWH2BjFyaXV9lChoBkdAcQ5zIFNcnmgHTTwBaAhHQJ1iKGmDUVl1fZQoaAZHQHBhDV+Zw4toB00VAWgIR0CdYlxsEaESdX2UKGgGR0BxntSeiBXkaAdNCQFoCEdAnWJYAXEZSHV9lChoBkdAcaar1M/QjWgHS/toCEdAnWL9IGyHEnV9lChoBkdAcbpRwZOzp2gHS/BoCEdAnWRgh0QsgHV9lChoBkdAcW69Nvfj0mgHTR4BaAhHQJ1lgq9XcQB1fZQoaAZHQHA7yVrylN1oB0v3aAhHQJ1l7d8Aq/d1fZQoaAZHQHIMHhCMPz5oB00UAWgIR0CdZuEpAlfJdX2UKGgGR0ByzV9QXQ+maAdNGAFoCEdAnWkwhfShJ3V9lChoBkdAckmTYdyT6mgHS/9oCEdAnWqsBIWgvnV9lChoBkdAcJ0ePJaJRGgHS+1oCEdAnWvO717IDHV9lChoBkdActm0PpY9xWgHTQYBaAhHQJ1txOgxrSF1fZQoaAZHQHAilkYoAn5oB00BAWgIR0CdbfW2PT5PdX2UKGgGR0Bw21Zs9B8haAdL+WgIR0CdbjnU2DQJdX2UKGgGR0ByAOqo60Y1aAdL+mgIR0Cdbkz8gpz+dX2UKGgGR0BvRmJiy6czaAdL+2gIR0CdbyqD9OyndX2UKGgGR0By4SiAUcn3aAdNGgFoCEdAnW+4kE9t/HV9lChoBkdAcMigmqo60mgHS+hoCEdAnW/k9Mbm2nV9lChoBkdAbOjhuO0b+GgHS+xoCEdAnXFtc4YJmnV9lChoBkdAcTTYNiH6/WgHTRwBaAhHQJ10lHXmNip1fZQoaAZHQHDZShvitJZoB02PAWgIR0CddbiADq4ZdX2UKGgGR0BwffPX05EMaAdNIAFoCEdAnXYUFW4mTnV9lChoBkdAcFxgTRIBimgHS/doCEdAnXfEliSaE3V9lChoBkdAcLH5TIeYD2gHTRUBaAhHQJ133HS4OMF1fZQoaAZHQErfVktmL+BoB0umaAhHQJ14GVfNRm91fZQoaAZHQHCP4y0rsjVoB0v7aAhHQJ14nnQpnYh1fZQoaAZHQHBvvChvitJoB0vsaAhHQJ15jKYAsCl1fZQoaAZHQGKvAG0NSZVoB03oA2gIR0Cdee8CxNZedX2UKGgGR0BwZ14IKMNuaAdL/mgIR0CdeevH93r2dX2UKGgGR0BwrNHrhR64aAdNBQFoCEdAnXppckdFOXV9lChoBkdAbQrokiUxEmgHS/BoCEdAnXqwzpHI63V9lChoBkdAcBRZxJd0JWgHTQcBaAhHQJ167PcBU711fZQoaAZHQHHleivgWJtoB00kAWgIR0Cdex8IzFdcdX2UKGgGR0BwoZ4fOlfraAdL/2gIR0Cde+2xptaZdX2UKGgGR0BwFxhw2l2vaAdL/GgIR0CdfYuctoSMdX2UKGgGR0BymkRAbADaaAdNBQFoCEdAnX6E6gdwN3V9lChoBkdAcpCDHOryUmgHTRYBaAhHQJ1/V1uBMBZ1fZQoaAZHQHDfsrmQr+ZoB0vnaAhHQJ1/WCQLeAN1fZQoaAZHQHAm0yHmA9VoB0v3aAhHQJ1/kgKWszV1fZQoaAZHQHDBzh99c8loB0v0aAhHQJ1/jXGwRoR1fZQoaAZHQHCnQ7gbZOBoB00FAWgIR0CdgMcBEKE4dX2UKGgGR0ByCciMYMvzaAdL82gIR0CdgWc0tRNzdX2UKGgGR0BwPo7yQPqcaAdL+2gIR0Cdga7qIJqqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 288, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96c97b2c7c779e8e760337972fb2e08ea1d4ab57a5b9df2c569865d28b451760
3
+ size 146699
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f627f6fd510>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f627f6fd5a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f627f6fd630>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f627f6fd6c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f627f6fd750>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f627f6fd7e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f627f6fd870>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f627f6fd900>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f627f6fd990>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f627f6fda20>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f627f6fdab0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f627f6fdb40>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f627f704040>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1696598657461561813,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGA7W750CLq8rJWquyw/DLr8NyQ+1nzaOgAAgD8AAIA/muR5vWJgqD92uzi+oIr6vqdIqr2Fihg9AAAAAAAAAADNFGw8KRh6uvpSKTm7N640h3GuOs8GQrgAAIA/AACAP+Yxzj2DfVU/XzkEPb594r6PThM+hU5+vQAAAAAAAAAA2uMPvgqp7D41fKs8oImevlhX2bzzWVq8AAAAAAAAAAAA3JI8w2U4Of4hijv/Q4M8fKCNOTyLhTsAAAAAAAAAAAAzPr22lTW8kdtBPttzRr5ZK1W76nXovAAAgD8AAIA/msmKu7ayuD/Gjk29BMBVPbXvmbzOA6m8AAAAAAAAAADQ/pG+MENpP/XHbL2S0Na+PleCvpwNQT4AAAAAAAAAALOEMb3pMhK8B2CJPVTWPjzOkXu94NMePQAAgD8AAIA/Zq1BPWPRtz9SNoY+FpsXvvuYmj1s5wk+AAAAAAAAAABmnh4+cBQ3PzjEN73AGNy+gfulPWh1fL0AAAAAAAAAADMfvrxSpOS7+n+fO5NGkTw+nzc9YFd0vQAAgD8AAIA/GrIPPvEDGj9B/4K9s9bKvkMuGj3+jCG+AAAAAAAAAAAAyrs99nQuuttn0zraca01ZgGpOlMW+7kAAIA/AAAAAKaIoj0V810+E2GcvCZIlL4q2d48MJ+YvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVGQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGLtgnc+JSMAWyUS+yMAXSUR0CdLLn2qT8pdX2UKGgGR0BwfYNDtw71aAdNBwFoCEdAnS0tm+TNdXV9lChoBkdAcwPsQNCqqGgHTWUBaAhHQJ0t+x2St/51fZQoaAZHQG8BAXMyJsRoB0vpaAhHQJ0uIxzq8lJ1fZQoaAZHQHJV48p1A7hoB0v2aAhHQJ0vdpGnXNF1fZQoaAZHQHCIazzErG1oB00LAWgIR0CdL7Du0CzUdX2UKGgGR0BwpaRjjJdTaAdNHQFoCEdAnTJvQfIS13V9lChoBkdAcaoD8+A3DWgHTQkBaAhHQJ0zQvXbudB1fZQoaAZHQHFN2/BWPtFoB00TAWgIR0CdNsTzundgdX2UKGgGR0BwsrjFQ2uQaAdNLgFoCEdAnTb+Cwr1/XV9lChoBkdAcx4lqJuVHGgHTQQBaAhHQJ03G7Wd3B51fZQoaAZHQHAYO1KGtZFoB00cAWgIR0CdNzhDw6QvdX2UKGgGR0BxXe9oN/e+aAdL7WgIR0CdOLwGW2PUdX2UKGgGR0BzNOCjDbaiaAdNDQFoCEdAnTja6asp5XV9lChoBkdAcNOLYwqRU2gHTQMBaAhHQJ05KKEWZZ11fZQoaAZHQG8wkDIRywRoB00gAWgIR0CdOgvlU6xPdX2UKGgGR0Bw9yjzqbBoaAdNDQFoCEdAnTqGaDwpfHV9lChoBkdAcShGSZBsymgHS/loCEdAnTr2UwBYFXV9lChoBkdAYaTo11nuiWgHTegDaAhHQJ07LvMKTjh1fZQoaAZHQHDT7d8Aq/doB00sAWgIR0CdO48cuJ1rdX2UKGgGR0BzJCRT0g8saAdNEAFoCEdAnTuiSq2jPHV9lChoBkdAca0kfcN6PmgHTQ0BaAhHQJ09TmfXf651fZQoaAZHQHHNTxwyZa5oB00CAWgIR0CdPXMuvlltdX2UKGgGR0Bw/30oScslaAdL22gIR0CdPhDK5kLAdX2UKGgGR0BywV9F4LThaAdNBAFoCEdAnT+eizsyBXV9lChoBkdAcniYDTz/ZWgHTQQBaAhHQJ0/tqCYkVx1fZQoaAZHQHEXrk0aZQZoB0vXaAhHQJ0/zybx3FF1fZQoaAZHQG+8OAy2x6hoB00NAWgIR0CdP9D1oQFtdX2UKGgGR0Bx+lx//echaAdNBgNoCEdAnUAZ22XsxHV9lChoBkdAcsHsuWa+e2gHS/VoCEdAnUCGrsByS3V9lChoBkdAcLc1M/QjU2gHTQwBaAhHQJ1Bh7dBSk11fZQoaAZHQHDeTV6NVBFoB0vmaAhHQJ1BmElE7XB1fZQoaAZHQHJV2hdt2s9oB0v9aAhHQJ1B115jYqZ1fZQoaAZHQHDYXZ00WM1oB0vraAhHQJ1Ciw1R+Bp1fZQoaAZHQHLRfub7TDxoB00QAWgIR0CdQwWO6unudX2UKGgGR0ByNdFWn0kGaAdNIQFoCEdAnUOrKmsNlXV9lChoBkdAcA3jR2KVIWgHTVABaAhHQJ1Fd32VVxV1fZQoaAZHQHCOrMC9ytFoB0v8aAhHQJ1FdTDO1OV1fZQoaAZHQHNVFM/QjUxoB00eAWgIR0CdRd0EX+ERdX2UKGgGR0BzEC77Kq4paAdNLwFoCEdAnUY+F+NLlHV9lChoBkdAcV/QRwqAjWgHS+1oCEdAnUZ5udf9gnV9lChoBkdAbZMhAWznimgHS/9oCEdAnUczK9wm3XV9lChoBkdAcZRHIIWxhWgHTQoBaAhHQJ1Yet0V8Cx1fZQoaAZHQHMUx6fJ3gVoB00NAWgIR0CdWHqWC2+gdX2UKGgGR0BxVl4lhPTHaAdNHwFoCEdAnVlor4Fia3V9lChoBkdAciL3ueBg/mgHS+poCEdAnVljlYEGJXV9lChoBkdAcFljMmnfmGgHTQEBaAhHQJ1aGBtk4FR1fZQoaAZHQG1v4FRpDeFoB0vxaAhHQJ1asQAdXDF1fZQoaAZHQHD7Q2VE/jdoB00jAWgIR0CdW2yRB/qgdX2UKGgGR0BxELQjUutfaAdL/GgIR0CdW53nIQvpdX2UKGgGR0BxWFrbg0j1aAdNDwFoCEdAnVz1Au7HyXV9lChoBkdAcQsKD0163WgHS/1oCEdAnV5cZP2wmnV9lChoBkdAcojANXo1UGgHTQoBaAhHQJ1e0WrOqvN1fZQoaAZHQG7266BiCrdoB00PAWgIR0CdYOSxqwhXdX2UKGgGR0ByRvrIHTqjaAdL9GgIR0CdYVbJwKjSdX2UKGgGR0BvhFCiRGMGaAdNJwFoCEdAnWHFdHDrJXV9lChoBkdAb5Q3++/QB2gHS+JoCEdAnWH2BjFyaXV9lChoBkdAcQ5zIFNcnmgHTTwBaAhHQJ1iKGmDUVl1fZQoaAZHQHBhDV+Zw4toB00VAWgIR0CdYlxsEaESdX2UKGgGR0BxntSeiBXkaAdNCQFoCEdAnWJYAXEZSHV9lChoBkdAcaar1M/QjWgHS/toCEdAnWL9IGyHEnV9lChoBkdAcbpRwZOzp2gHS/BoCEdAnWRgh0QsgHV9lChoBkdAcW69Nvfj0mgHTR4BaAhHQJ1lgq9XcQB1fZQoaAZHQHA7yVrylN1oB0v3aAhHQJ1l7d8Aq/d1fZQoaAZHQHIMHhCMPz5oB00UAWgIR0CdZuEpAlfJdX2UKGgGR0ByzV9QXQ+maAdNGAFoCEdAnWkwhfShJ3V9lChoBkdAckmTYdyT6mgHS/9oCEdAnWqsBIWgvnV9lChoBkdAcJ0ePJaJRGgHS+1oCEdAnWvO717IDHV9lChoBkdActm0PpY9xWgHTQYBaAhHQJ1txOgxrSF1fZQoaAZHQHAilkYoAn5oB00BAWgIR0CdbfW2PT5PdX2UKGgGR0Bw21Zs9B8haAdL+WgIR0CdbjnU2DQJdX2UKGgGR0ByAOqo60Y1aAdL+mgIR0Cdbkz8gpz+dX2UKGgGR0BvRmJiy6czaAdL+2gIR0CdbyqD9OyndX2UKGgGR0By4SiAUcn3aAdNGgFoCEdAnW+4kE9t/HV9lChoBkdAcMigmqo60mgHS+hoCEdAnW/k9Mbm2nV9lChoBkdAbOjhuO0b+GgHS+xoCEdAnXFtc4YJmnV9lChoBkdAcTTYNiH6/WgHTRwBaAhHQJ10lHXmNip1fZQoaAZHQHDZShvitJZoB02PAWgIR0CddbiADq4ZdX2UKGgGR0BwffPX05EMaAdNIAFoCEdAnXYUFW4mTnV9lChoBkdAcFxgTRIBimgHS/doCEdAnXfEliSaE3V9lChoBkdAcLH5TIeYD2gHTRUBaAhHQJ133HS4OMF1fZQoaAZHQErfVktmL+BoB0umaAhHQJ14GVfNRm91fZQoaAZHQHCP4y0rsjVoB0v7aAhHQJ14nnQpnYh1fZQoaAZHQHBvvChvitJoB0vsaAhHQJ15jKYAsCl1fZQoaAZHQGKvAG0NSZVoB03oA2gIR0Cdee8CxNZedX2UKGgGR0BwZ14IKMNuaAdL/mgIR0CdeevH93r2dX2UKGgGR0BwrNHrhR64aAdNBQFoCEdAnXppckdFOXV9lChoBkdAbQrokiUxEmgHS/BoCEdAnXqwzpHI63V9lChoBkdAcBRZxJd0JWgHTQcBaAhHQJ167PcBU711fZQoaAZHQHHleivgWJtoB00kAWgIR0Cdex8IzFdcdX2UKGgGR0BwoZ4fOlfraAdL/2gIR0Cde+2xptaZdX2UKGgGR0BwFxhw2l2vaAdL/GgIR0CdfYuctoSMdX2UKGgGR0BymkRAbADaaAdNBQFoCEdAnX6E6gdwN3V9lChoBkdAcpCDHOryUmgHTRYBaAhHQJ1/V1uBMBZ1fZQoaAZHQHDfsrmQr+ZoB0vnaAhHQJ1/WCQLeAN1fZQoaAZHQHAm0yHmA9VoB0v3aAhHQJ1/kgKWszV1fZQoaAZHQHDBzh99c8loB0v0aAhHQJ1/jXGwRoR1fZQoaAZHQHCnQ7gbZOBoB00FAWgIR0CdgMcBEKE4dX2UKGgGR0ByCciMYMvzaAdL82gIR0CdgWc0tRNzdX2UKGgGR0BwPo7yQPqcaAdL+2gIR0Cdga7qIJqqdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 288,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fe2a61c2395fbad3008a2bcc9717654719544e596b42021593f5ca904f6000c
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b11cba89bc58c45be2725c3360ba5c2d53e5a25ba0affbaea1de90b007dfe036
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (160 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 281.494713, "std_reward": 21.393504083972164, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-06T14:00:19.589362"}