# from transformers import AutoTokenizer, RobertaModel | |
# model = RobertaModel.from_pretrained('sinhala-roberta-mc4', from_flax=True) | |
# tokenizer = AutoTokenizer.from_pretrained('sinhala-roberta-mc4') | |
# tokenizer.save_pretrained('sinhala-roberta-mc4') | |
# model.save_pretrained('sinhala-roberta-mc4') | |
from transformers import RobertaForMaskedLM, FlaxRobertaForMaskedLM, AutoTokenizer | |
import torch | |
import numpy as np | |
import jax | |
import jax.numpy as jnp | |
jax.config.update('jax_platform_name', 'cpu') | |
MODEL_PATH = "sinhala-roberta-oscar" | |
model = FlaxRobertaForMaskedLM.from_pretrained(MODEL_PATH) | |
def to_f32(t): | |
return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t) | |
model.params = to_f32(model.params) | |
model.save_pretrained(MODEL_PATH) | |
pt_model = RobertaForMaskedLM.from_pretrained(MODEL_PATH, from_flax=True).to('cpu') | |
input_ids = np.asarray(2 * [128 * [0]], dtype=np.int32) | |
input_ids_pt = torch.tensor(input_ids) | |
logits_pt = pt_model(input_ids_pt).logits | |
print(logits_pt) | |
logits_fx = model(input_ids).logits | |
print(logits_fx) | |
pt_model.save_pretrained(MODEL_PATH) | |
# also save tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) | |
tokenizer.save_pretrained(MODEL_PATH) | |