a2c-PandaReachDense-v2 / config.json
keshan's picture
Initial commit
d139497
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcb7c41d9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcb7c423120>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2500000, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674026139866792743, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAR7vVPi1Pnzvqxwk/R7vVPi1Pnzvqxwk/R7vVPi1Pnzvqxwk/R7vVPi1Pnzvqxwk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcLdFP5voc79hUn6/Eee8v89kLD8lgoQ/5W7hPsGh/z5hPKo/Qo+xvyX9Gz+iFHK8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABHu9U+LU+fO+rHCT/7qbA9KO2rOIAgiT1Hu9U+LU+fO+rHCT/7qbA9KO2rOIAgiT1Hu9U+LU+fO+rHCT/7qbA9KO2rOIAgiT1Hu9U+LU+fO+rHCT/7qbA9KO2rOIAgiT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41744444 0.00486173 0.5382067 ]\n [0.41744444 0.00486173 0.5382067 ]\n [0.41744444 0.00486173 0.5382067 ]\n [0.41744444 0.00486173 0.5382067 ]]", "desired_goal": "[[ 0.7723303 -0.952768 -0.9934445 ]\n [-1.4758016 0.6734132 1.0352217 ]\n [ 0.44029918 0.49928096 1.3299676 ]\n [-1.3871844 0.6093314 -0.01477543]]", "observation": "[[4.1744444e-01 4.8617334e-03 5.3820670e-01 8.6261712e-02 8.1980892e-05\n 6.6956520e-02]\n [4.1744444e-01 4.8617334e-03 5.3820670e-01 8.6261712e-02 8.1980892e-05\n 6.6956520e-02]\n [4.1744444e-01 4.8617334e-03 5.3820670e-01 8.6261712e-02 8.1980892e-05\n 6.6956520e-02]\n [4.1744444e-01 4.8617334e-03 5.3820670e-01 8.6261712e-02 8.1980892e-05\n 6.6956520e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzdarvFTHmr3zrZI+GfODPSvaorwhV2U+uiaRvT8eDb6nDVI+J+EQvrpltD3tdT09lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02097645 -0.0755755 0.28648338]\n [ 0.06442852 -0.01987942 0.22396518]\n [-0.07087465 -0.13781069 0.2051302 ]\n [-0.14148389 0.08808465 0.04625504]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFHr9SXxu7b+UhpRSlIwBbJRLMowBdJRHQLp1heokzGh1fZQoaAZoCWgPQwgxfERMiaTrv5SGlFKUaBVLMmgWR0C6dWdE5QxfdX2UKGgGaAloD0MIG7luSnkt7L+UhpRSlGgVSzJoFkdAunVJVCHARHV9lChoBmgJaA9DCEP/BBcrKvK/lIaUUpRoFUsyaBZHQLp1KNzKcNJ1fZQoaAZoCWgPQwgDXJAty9fwv5SGlFKUaBVLMmgWR0C6dgjbFjusdX2UKGgGaAloD0MIcyzvqgfM7b+UhpRSlGgVSzJoFkdAunXpzhgmZ3V9lChoBmgJaA9DCLZLGw5Lg/e/lIaUUpRoFUsyaBZHQLp1y/PgNw11fZQoaAZoCWgPQwiA1CZO7nfpv5SGlFKUaBVLMmgWR0C6dasZHd43dX2UKGgGaAloD0MIERssnKQ58b+UhpRSlGgVSzJoFkdAunaJCUornXV9lChoBmgJaA9DCKZDp+fdWOe/lIaUUpRoFUsyaBZHQLp2aeZ5Rj11fZQoaAZoCWgPQwhVvmckQiPav5SGlFKUaBVLMmgWR0C6dkvt6X0HdX2UKGgGaAloD0MI3NRA8zl347+UhpRSlGgVSzJoFkdAunYrJRwZO3V9lChoBmgJaA9DCNCX3v5cNOW/lIaUUpRoFUsyaBZHQLp3CaYu01J1fZQoaAZoCWgPQwji6gCIu3rsv5SGlFKUaBVLMmgWR0C6duqEi+tbdX2UKGgGaAloD0MIcXZrmQwH+b+UhpRSlGgVSzJoFkdAunbMuBczInV9lChoBmgJaA9DCObnhqbs9OO/lIaUUpRoFUsyaBZHQLp2q+8oQWh1fZQoaAZoCWgPQwi0AG2rWeflv5SGlFKUaBVLMmgWR0C6d4wWzniedX2UKGgGaAloD0MIFMstrYbE2b+UhpRSlGgVSzJoFkdAunds6dUbUHV9lChoBmgJaA9DCAvw3eaNk+G/lIaUUpRoFUsyaBZHQLp3TvYvnKZ1fZQoaAZoCWgPQwi0keumlNfxv5SGlFKUaBVLMmgWR0C6dy4iC8ODdX2UKGgGaAloD0MIOlyrPeyF4b+UhpRSlGgVSzJoFkdAungvVwxWUHV9lChoBmgJaA9DCGdg5GVNrOW/lIaUUpRoFUsyaBZHQLp4EE4//vR1fZQoaAZoCWgPQwhIh4cwfprmv5SGlFKUaBVLMmgWR0C6d/JjpcHGdX2UKGgGaAloD0MI5j+k376O67+UhpRSlGgVSzJoFkdAunfR77bcoHV9lChoBmgJaA9DCPZ5jPLMy9K/lIaUUpRoFUsyaBZHQLp4sUG3WnV1fZQoaAZoCWgPQwhD/plBfGDNv5SGlFKUaBVLMmgWR0C6eJI02tMgdX2UKGgGaAloD0MIuoYZGk+E77+UhpRSlGgVSzJoFkdAunh0YKpkw3V9lChoBmgJaA9DCG7fo/56BeG/lIaUUpRoFUsyaBZHQLp4U4wRGtp1fZQoaAZoCWgPQwjCilOthVnXv5SGlFKUaBVLMmgWR0C6eTekP+XJdX2UKGgGaAloD0MIIv5hS48m5r+UhpRSlGgVSzJoFkdAunkYpz90inV9lChoBmgJaA9DCL7BFyZTBfK/lIaUUpRoFUsyaBZHQLp4+uQp4KR1fZQoaAZoCWgPQwjaHOc24V7Lv5SGlFKUaBVLMmgWR0C6eNoFRpDedX2UKGgGaAloD0MI8S2sG++O87+UhpRSlGgVSzJoFkdAunnAKc/dI3V9lChoBmgJaA9DCKH0hZDzfuK/lIaUUpRoFUsyaBZHQLp5oP1+RYB1fZQoaAZoCWgPQwjTE5Z4QNnov5SGlFKUaBVLMmgWR0C6eYMhPj4pdX2UKGgGaAloD0MIflUuVP615L+UhpRSlGgVSzJoFkdAunlioOx0MnV9lChoBmgJaA9DCMpUwaikTuG/lIaUUpRoFUsyaBZHQLp6PyOaOPx1fZQoaAZoCWgPQwgc7bjhd1Pxv5SGlFKUaBVLMmgWR0C6eiAVTJhfdX2UKGgGaAloD0MIXvHUIw1u1L+UhpRSlGgVSzJoFkdAunoCOBDohnV9lChoBmgJaA9DCBsrMc9KWtm/lIaUUpRoFUsyaBZHQLp54WhAWzp1fZQoaAZoCWgPQwhmn8coz7zmv5SGlFKUaBVLMmgWR0C6esW/SH/MdX2UKGgGaAloD0MIxyx7Etic37+UhpRSlGgVSzJoFkdAunqmr4nF53V9lChoBmgJaA9DCMzuycNCreG/lIaUUpRoFUsyaBZHQLp6iNlAeJZ1fZQoaAZoCWgPQwgVj4tqEVHYv5SGlFKUaBVLMmgWR0C6emgMhHLBdX2UKGgGaAloD0MIilWDMLc797+UhpRSlGgVSzJoFkdAuntCEGqxT3V9lChoBmgJaA9DCJdyvth78d2/lIaUUpRoFUsyaBZHQLp7Ivc8DCB1fZQoaAZoCWgPQwjYfcfw2E/gv5SGlFKUaBVLMmgWR0C6ewUoWpIddX2UKGgGaAloD0MIgEdUqG4u5L+UhpRSlGgVSzJoFkdAunrkXhwVCXV9lChoBmgJaA9DCHnL1Y9N8uS/lIaUUpRoFUsyaBZHQLp7xsZYPoV1fZQoaAZoCWgPQwiN0TqqmmDzv5SGlFKUaBVLMmgWR0C6e6e+mFajdX2UKGgGaAloD0MIj1a1pKPc8r+UhpRSlGgVSzJoFkdAunuJ5nlGPXV9lChoBmgJaA9DCHJsPUM4Ztu/lIaUUpRoFUsyaBZHQLp7aWgvlEJ1fZQoaAZoCWgPQwi3Jt2WyIXpv5SGlFKUaBVLMmgWR0C6fEmqgh8qdX2UKGgGaAloD0MIq5Se6SUG8L+UhpRSlGgVSzJoFkdAunwqp4rz5HV9lChoBmgJaA9DCI0ngjgPp+6/lIaUUpRoFUsyaBZHQLp8DND+irV1fZQoaAZoCWgPQwiA7zZvnBTxv5SGlFKUaBVLMmgWR0C6e+wTM7lrdX2UKGgGaAloD0MIUInrGFdc6L+UhpRSlGgVSzJoFkdAunzQbp/wzHV9lChoBmgJaA9DCEHTEiujkd6/lIaUUpRoFUsyaBZHQLp8sXf642F1fZQoaAZoCWgPQwg+k/3zNGDqv5SGlFKUaBVLMmgWR0C6fJO6iCardX2UKGgGaAloD0MI14UfnE+d8L+UhpRSlGgVSzJoFkdAunxzDHfdh3V9lChoBmgJaA9DCPdzCvKzEfC/lIaUUpRoFUsyaBZHQLp9ZaqjrRl1fZQoaAZoCWgPQwj5ZwbxgZ3lv5SGlFKUaBVLMmgWR0C6fUad+XqrdX2UKGgGaAloD0MIryZPWU3X2L+UhpRSlGgVSzJoFkdAun0orJ8v3HV9lChoBmgJaA9DCA6g3/dv3vK/lIaUUpRoFUsyaBZHQLp9B9pyp711fZQoaAZoCWgPQwgGaFvNOmPsv5SGlFKUaBVLMmgWR0C6feZgkTpQdX2UKGgGaAloD0MIxQJf0a3X5L+UhpRSlGgVSzJoFkdAun3HO2RaHXV9lChoBmgJaA9DCLiQR3Aj5eq/lIaUUpRoFUsyaBZHQLp9qVIqbz91fZQoaAZoCWgPQwjL94xEaIThv5SGlFKUaBVLMmgWR0C6fYh8+iaidX2UKGgGaAloD0MIiEojZvb54L+UhpRSlGgVSzJoFkdAun5jz9S/CnV9lChoBmgJaA9DCMv49xkXjuu/lIaUUpRoFUsyaBZHQLp+RNliBoV1fZQoaAZoCWgPQwjVXkTbMfXkv5SGlFKUaBVLMmgWR0C6ficKohpydX2UKGgGaAloD0MIud42UyGe5b+UhpRSlGgVSzJoFkdAun4GKXOW0XV9lChoBmgJaA9DCOmbNA2K5uW/lIaUUpRoFUsyaBZHQLp+8ofCAMF1fZQoaAZoCWgPQwiRtvEnKpvzv5SGlFKUaBVLMmgWR0C6ftN5t3wDdX2UKGgGaAloD0MIR8hAnl2+5b+UhpRSlGgVSzJoFkdAun61oJzDGnV9lChoBmgJaA9DCDnQQ20bRu2/lIaUUpRoFUsyaBZHQLp+lPZZjhF1fZQoaAZoCWgPQwh0C12JQPXzv5SGlFKUaBVLMmgWR0C6f39y925hdX2UKGgGaAloD0MIBhGpaReT8r+UhpRSlGgVSzJoFkdAun9gq2Bre3V9lChoBmgJaA9DCPUQje4gduW/lIaUUpRoFUsyaBZHQLp/QwOOKfp1fZQoaAZoCWgPQwgr9pfdk4fiv5SGlFKUaBVLMmgWR0C6fyKePJaJdX2UKGgGaAloD0MIKdAn8iTp9L+UhpRSlGgVSzJoFkdAuoADMNc4YXV9lChoBmgJaA9DCKcGms+5m/C/lIaUUpRoFUsyaBZHQLp/5DgZTAF1fZQoaAZoCWgPQwhMpDSbx2Hvv5SGlFKUaBVLMmgWR0C6f8ZiuuA7dX2UKGgGaAloD0MIiGTIsfWM9b+UhpRSlGgVSzJoFkdAun+lpwjt5XV9lChoBmgJaA9DCAqEnWLV4PC/lIaUUpRoFUsyaBZHQLqAjLrX18N1fZQoaAZoCWgPQwhpGan3VI70v5SGlFKUaBVLMmgWR0C6gG26ClJpdX2UKGgGaAloD0MIflaZKa2/8b+UhpRSlGgVSzJoFkdAuoBP7l7tzHV9lChoBmgJaA9DCKSOjquR3em/lIaUUpRoFUsyaBZHQLqALy08eS11fZQoaAZoCWgPQwhqhlRRvArzv5SGlFKUaBVLMmgWR0C6gQzXFtKqdX2UKGgGaAloD0MIkgThCijU8r+UhpRSlGgVSzJoFkdAuoDtvfj0c3V9lChoBmgJaA9DCGYv205bY/y/lIaUUpRoFUsyaBZHQLqAz8+A3DN1fZQoaAZoCWgPQwhqhlRRvIr+v5SGlFKUaBVLMmgWR0C6gK7dWQwLdX2UKGgGaAloD0MIttjts8oM9L+UhpRSlGgVSzJoFkdAuoGG2UjcEnV9lChoBmgJaA9DCLmmQGZnkfe/lIaUUpRoFUsyaBZHQLqBaDyOJch1fZQoaAZoCWgPQwiUhETaxl/wv5SGlFKUaBVLMmgWR0C6gUqbWmP6dX2UKGgGaAloD0MIYcYUrHG28b+UhpRSlGgVSzJoFkdAuoEpzhgmZ3V9lChoBmgJaA9DCB3k9WBSfPC/lIaUUpRoFUsyaBZHQLqCEDTjNpx1fZQoaAZoCWgPQwg/qmG/J1b6v5SGlFKUaBVLMmgWR0C6gfEtdzGQdX2UKGgGaAloD0MIOQmlL4Sc87+UhpRSlGgVSzJoFkdAuoHTPOY6XHV9lChoBmgJaA9DCJ86Vik9U+q/lIaUUpRoFUsyaBZHQLqBsnH/9511ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 78125, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}