|
|
|
|
|
|
|
|
|
#pragma once |
|
|
|
#include <cmath> |
|
|
|
#include <cute/tensor.hpp> |
|
|
|
#include <cutlass/numeric_types.h> |
|
|
|
#include "utils.h" |
|
|
|
namespace flash { |
|
|
|
using namespace cute; |
|
|
|
|
|
|
|
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator> |
|
__device__ __forceinline__ void thread_reduce_(Tensor<Engine0, Layout0> const &tensor, Tensor<Engine1, Layout1> &summary, Operator &op) { |
|
static_assert(Layout0::rank == 2, "Only support 2D Tensor"); |
|
static_assert(Layout1::rank == 1, "Only support 1D Tensor"); |
|
CUTE_STATIC_ASSERT_V(size<0>(summary) == size<0>(tensor)); |
|
#pragma unroll |
|
for (int ni = 0; ni < size<1>(tensor); ni++) { |
|
#pragma unroll |
|
for (int mi = 0; mi < size<0>(tensor); mi++) { |
|
summary(mi) = zero_init && ni == 0 ? tensor(mi, ni) : op(summary(mi), tensor(mi, ni)); |
|
} |
|
} |
|
} |
|
|
|
template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator> |
|
__device__ __forceinline__ void quad_allreduce_(Tensor<Engine0, Layout0> &dst, Tensor<Engine1, Layout1> &src, Operator &op) { |
|
CUTE_STATIC_ASSERT_V(size(dst) == size(src)); |
|
#pragma unroll |
|
for (int i = 0; i < size(dst); i++) { |
|
dst(i) = Allreduce<4>::run(src(i), op); |
|
} |
|
} |
|
|
|
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator> |
|
__device__ __forceinline__ void reduce_(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &summary, Operator &op) { |
|
thread_reduce_<zero_init>(tensor, summary, op); |
|
quad_allreduce_(summary, summary, op); |
|
} |
|
|
|
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1> |
|
__device__ __forceinline__ void reduce_max(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &max){ |
|
MaxOp<float> max_op; |
|
reduce_<zero_init>(tensor, max, max_op); |
|
} |
|
|
|
template<bool zero_init=true, bool warp_reduce=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1> |
|
__device__ __forceinline__ void reduce_sum(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &sum){ |
|
SumOp<float> sum_op; |
|
thread_reduce_<zero_init>(tensor, sum, sum_op); |
|
if constexpr (warp_reduce) { quad_allreduce_(sum, sum, sum_op); } |
|
} |
|
|
|
|
|
template <bool Scale_max=true, bool Check_inf=true, int Max_offset=0, |
|
typename Engine0, typename Layout0, typename Engine1, typename Layout1> |
|
__forceinline__ __device__ void scale_apply_exp2(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &max, const float scale) { |
|
|
|
|
|
static constexpr float max_offset = float(Max_offset); |
|
static_assert(Layout0::rank == 2, "Only support 2D Tensor"); |
|
static_assert(Layout1::rank == 1, "Only support 1D Tensor"); |
|
CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor)); |
|
#pragma unroll |
|
for (int mi = 0; mi < size<0>(tensor); ++mi) { |
|
|
|
|
|
const float max_scaled = Check_inf |
|
? (max(mi) == -INFINITY ? 0.f : (!Scale_max ? max(mi) : max(mi) * scale) - max_offset) |
|
: (!Scale_max ? max(mi) : max(mi) * scale) - max_offset; |
|
#pragma unroll |
|
for (int ni = 0; ni < size<1>(tensor); ++ni) { |
|
|
|
|
|
|
|
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled); |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
template <int kNRows, int Max_offset=0> |
|
struct Softmax { |
|
|
|
using TensorT = decltype(make_tensor<float>(Shape<Int<kNRows>>{})); |
|
TensorT row_max, row_sum; |
|
float const softmax_scale_log2; |
|
|
|
CUTLASS_DEVICE Softmax(float const softmax_scale_log2_) : softmax_scale_log2(softmax_scale_log2_) {}; |
|
|
|
template<bool Is_first, bool Check_inf=false, typename Tensor0> |
|
__forceinline__ __device__ TensorT max_get_scale(Tensor0 &acc_s) { |
|
|
|
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout())); |
|
static_assert(CUTE_STATIC_V(size<0>(scores)) == kNRows); |
|
TensorT scores_scale; |
|
if constexpr (Is_first) { |
|
flash::template reduce_max</*zero_init=*/true>(scores, row_max); |
|
cute::fill(scores_scale, 1.f); |
|
} else { |
|
Tensor scores_max_prev = make_fragment_like(row_max); |
|
cute::copy(row_max, scores_max_prev); |
|
flash::template reduce_max</*zero_init=*/false>(scores, row_max); |
|
#pragma unroll |
|
for (int mi = 0; mi < size(row_max); ++mi) { |
|
float scores_max_cur = !Check_inf |
|
? row_max(mi) |
|
: (row_max(mi) == -INFINITY ? 0.0f : row_max(mi)); |
|
scores_scale(mi) = exp2f((scores_max_prev(mi) - scores_max_cur) * softmax_scale_log2); |
|
row_sum(mi) *= scores_scale(mi); |
|
} |
|
} |
|
return scores_scale; |
|
}; |
|
|
|
template<bool Is_first, bool Check_inf=false, typename Tensor0> |
|
__forceinline__ __device__ void online_softmax(Tensor0 &acc_s) { |
|
|
|
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout())); |
|
static_assert(CUTE_STATIC_V(size<0>(scores)) == kNRows); |
|
flash::template scale_apply_exp2</*Scale_max=*/true, Check_inf, Max_offset>(scores, row_max, softmax_scale_log2); |
|
|
|
|
|
flash::reduce_sum</*zero_init=*/Is_first, false>(scores, row_sum); |
|
}; |
|
|
|
__forceinline__ __device__ TensorT finalize(float const final_scale=1.f) { |
|
SumOp<float> sum_op; |
|
quad_allreduce_(row_sum, row_sum, sum_op); |
|
TensorT scores_scale; |
|
#pragma unroll |
|
for (int mi = 0; mi < size(row_sum); ++mi) { |
|
float sum = row_sum(mi); |
|
float inv_sum = (sum == 0.f || sum != sum) ? 0.f : 1.f / sum; |
|
scores_scale(mi) = inv_sum * final_scale; |
|
|
|
if constexpr (Max_offset != 0) { |
|
static constexpr float sum_scale = 1.f / float(1 << Max_offset); |
|
sum *= sum_scale; |
|
} |
|
row_sum(mi) = (sum == 0.f || sum != sum) ? -INFINITY : row_max(mi) * (softmax_scale_log2 * float(M_LN2)) + __logf(sum); |
|
} |
|
return scores_scale; |
|
}; |
|
|
|
template<typename Tensor1> |
|
__forceinline__ __device__ void rescale_o(Tensor1 &acc_o, TensorT const &scores_scale) { |
|
|
|
Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout())); |
|
static_assert(CUTE_STATIC_V(size<0>(acc_o_rowcol)) == kNRows); |
|
#pragma unroll |
|
for (int mi = 0; mi < size<0>(acc_o_rowcol); ++mi) { |
|
#pragma unroll |
|
for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scores_scale(mi); } |
|
} |
|
}; |
|
|
|
}; |
|
|
|
} |
|
|