kernel
danieldk's picture
danieldk HF Staff
Convert FA3 to Kernel Hub format
eb8ddce
/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include <cute/tensor.hpp>
#include "cutlass/fast_math.h" // For cutlass::FastDivmod
#include "utils.h"
namespace flash {
using namespace cute;
template <int kBlockM, int kBlockN, bool PackGQA, typename TiledMma, bool SwapAB=false>
struct Mask {
static_assert(!(PackGQA && SwapAB), "Cannot be both PackGQA and SwapAB");
int const thread_idx;
int const seqlen_q, seqlen_k;
int const window_size_left, window_size_right, sink_token_length;
cutlass::FastDivmod const attention_chunk_divmod;
cutlass::FastDivmod const qhead_per_khead_divmod;
CUTLASS_DEVICE
Mask(const int thread_idx, const int seqlen_q, const int seqlen_k,
const int window_size_left, const int window_size_right, const int sink_token_length,
cutlass::FastDivmod const &attention_chunk_divmod,
cutlass::FastDivmod const &qhead_per_khead_divmod)
: thread_idx(thread_idx)
, seqlen_q(seqlen_q)
, seqlen_k(seqlen_k)
, window_size_left(window_size_left)
, window_size_right(window_size_right)
, sink_token_length(sink_token_length)
, attention_chunk_divmod(attention_chunk_divmod)
, qhead_per_khead_divmod(qhead_per_khead_divmod)
{
};
template <bool Seqlenk_mask=false, bool Causal_mask=false, bool Local_mask=false,
typename Engine, typename Layout>
CUTLASS_DEVICE
void apply(Tensor<Engine, Layout> &tSrS, const int m_block, const int n_block) const {
static_assert(!(Causal_mask && Local_mask), "Cannot be both causal and local");
static_assert(Layout::rank == 3, "Only support 3D Tensor");
if (!Seqlenk_mask && !Causal_mask && !Local_mask) { return; }
auto thread_mma = TiledMma{}.get_thread_slice(thread_idx);
auto thread0_mma = TiledMma{}.get_thread_slice(_0{});
static constexpr int Row = !SwapAB ? 0 : 1, Col = !SwapAB ? 1 : 0;
Tensor cS = cute::make_identity_tensor(Shape<Int<!SwapAB ? kBlockM : kBlockN>, Int<!SwapAB ? kBlockN : kBlockM>>{});
Tensor tScS = thread_mma.partition_C(cS);
Tensor tSrS_rowcol = make_tensor(tSrS.data(), flash::convert_layout_acc_rowcol</*Transposed=*/SwapAB>(tSrS.layout()));
Tensor tScS_rowcol = make_tensor(tScS.data(), flash::convert_layout_acc_rowcol</*Transposed=*/SwapAB>(tScS.layout()));
Tensor t0ScS = thread0_mma.partition_C(cS);
Tensor t0ScS_rowcol = make_tensor(t0ScS.data(), flash::convert_layout_acc_rowcol</*Transposed=*/SwapAB>(t0ScS.layout()));
// We want to use the col indices of thread0 to compare, since that is known at compile time.
// So we subtract the limit by the first col index of this thread (get<Col>(tScS_rowcol(_0{}, _0{})))
int const thread_col_offset = get<Col>(tScS_rowcol(_0{}, _0{}));
int const seqlenk_col_limit = seqlen_k - n_block * kBlockN - thread_col_offset;
if constexpr (!Causal_mask && !Local_mask) {
if constexpr (Seqlenk_mask) { // Just masking based on col
#pragma unroll
for (int n = 0; n < size<1>(tSrS_rowcol); ++n) {
if (int(get<Col>(t0ScS_rowcol(_0{}, n))) >= seqlenk_col_limit) {
#pragma unroll
for (int m = 0; m < size<0>(tSrS_rowcol); ++m) { tSrS_rowcol(m, n) = -INFINITY; }
}
}
}
} else { // mask based on both row and col
if constexpr (!SwapAB) {
// If PackGQA, we split the work of compute divmod among threads in the same row
static constexpr int kMmaThreadsPerRow = size<0, 0>(typename TiledMma::AtomLayoutC_TV{});
static_assert(cutlass::NumThreadsPerWarp % kMmaThreadsPerRow == 0);
static_assert(!PackGQA || CUTE_STATIC_V(size<0>(tSrS_rowcol)) <= kMmaThreadsPerRow);
int mma_m_idx;
// Might get OOB but it's ok since we'll check it later
if constexpr (PackGQA) {
mma_m_idx = qhead_per_khead_divmod.divide(m_block * kBlockM + get<Row>(tScS_rowcol(thread_idx % kMmaThreadsPerRow, _0{})));
}
int const causal_row_offset = 1 + seqlen_k - n_block * kBlockN - seqlen_q - thread_col_offset;
if constexpr (Causal_mask) {
#pragma unroll
for (int m = 0; m < size<0>(tSrS_rowcol); ++m) {
int const row_idx = !PackGQA
? get<Row>(tScS_rowcol(m, _0{})) + m_block * kBlockM
: __shfl_sync(0xffffffff, mma_m_idx, m % kMmaThreadsPerRow, kMmaThreadsPerRow);
int const col_limit_right = !Seqlenk_mask
? row_idx + causal_row_offset
: __viaddmin_s32(row_idx, causal_row_offset, seqlenk_col_limit);
#pragma unroll
for (int n = 0; n < size<1>(tSrS_rowcol); ++n) {
if (int(get<Col>(t0ScS_rowcol(_0{}, n))) >= col_limit_right) { tSrS_rowcol(m, n) = -INFINITY; }
}
}
} else {
int const local_row_offset_right = causal_row_offset + window_size_right;
int const local_row_offset_left = causal_row_offset - 1 - window_size_left;
int const col_limit_sink = sink_token_length - n_block * kBlockN; // TODO: subtract thread_col_offset?
#pragma unroll
for (int m = 0; m < size<0>(tSrS_rowcol); ++m) {
int const row_idx = !PackGQA
? get<Row>(tScS_rowcol(m, _0{})) + m_block * kBlockM
: __shfl_sync(0xffffffff, mma_m_idx, m % kMmaThreadsPerRow, kMmaThreadsPerRow);
int col_limit_right = !Seqlenk_mask
? row_idx + local_row_offset_right
: __viaddmin_s32(row_idx, local_row_offset_right, seqlenk_col_limit);
int col_limit_left = row_idx + local_row_offset_left;
if (attention_chunk_divmod.divisor > 0) {
int col_limit_left_chunk = flash::round_down(attention_chunk_divmod, row_idx + seqlen_k - seqlen_q) - n_block * kBlockN - thread_col_offset;
col_limit_left = std::max(col_limit_left, col_limit_left_chunk);
col_limit_right = std::min(col_limit_right, col_limit_left_chunk + attention_chunk_divmod.divisor);
}
#pragma unroll
for (int n = 0; n < size<1>(tSrS_rowcol); ++n) {
int const col_idx = int(get<Col>(t0ScS_rowcol(m, n)));
if (col_idx >= col_limit_right || (col_idx < col_limit_left && col_idx >= col_limit_sink)) { tSrS_rowcol(m, n) = -INFINITY; }
}
}
}
} else {
// TODO: backward does not support attention_chunk yet
int const thread_row_offset = get<Row>(tScS_rowcol(_0{}, _0{}));
int const causal_row_offset = seqlenk_col_limit - seqlen_q + m_block * kBlockM + thread_row_offset;
if constexpr (Causal_mask) {
#pragma unroll
for (int n = 0; n < size<1>(tSrS_rowcol); ++n) {
int const col0 = int(get<Col>(t0ScS_rowcol(_0{}, n)));
// If col0 is beyond the column limit, we want to mask out the entire column, by setting
// row limit to be kBlockM.
int const row_limit_top = col0 >= seqlenk_col_limit ? kBlockM : col0 - causal_row_offset;
#pragma unroll
for (int m = 0; m < size<0>(tSrS_rowcol); ++m) {
if (int(get<Row>(t0ScS_rowcol(m, _0{}))) < row_limit_top) { tSrS_rowcol(m, n) = -INFINITY; }
}
}
} else {
int const col_limit_sink = sink_token_length - n_block * kBlockN - thread_col_offset;
#pragma unroll
for (int n = 0; n < size<1>(tSrS_rowcol); ++n) {
int const col0 = int(get<Col>(t0ScS_rowcol(_0{}, n)));
// If col0 is beyond the column limit, we want to mask out the entire column, by setting
// row limit to be kBlockM.
int const row_limit_top = col0 >= seqlenk_col_limit ? kBlockM : col0 - causal_row_offset - window_size_right;
int const row_limit_bot = col0 < col_limit_sink ? kBlockM : col0 - causal_row_offset + window_size_left;
#pragma unroll
for (int m = 0; m < size<0>(tSrS_rowcol); ++m) {
int const row_idx = int(get<Row>(t0ScS_rowcol(m, _0{})));
if (row_idx < row_limit_top || row_idx > row_limit_bot) { tSrS_rowcol(m, n) = -INFINITY; }
}
}
}
}
}
};
};
} // namespace flash