kernel
flash-attn3 / flash-attn /flash_fwd_combine_kernel.h
danieldk's picture
danieldk HF Staff
Convert FA3 to Kernel Hub format
eb8ddce
/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include "cute/tensor.hpp"
#include <cutlass/cutlass.h>
#include <cutlass/arch/memory.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include "cutlass/arch/grid_dependency_control.h"
#include "seqlen.h"
#include "utils.h"
namespace flash {
using namespace cute;
template <class TileShape_MK_, int kLogMaxSplits_, int kNThreads, int AlignmentLSE_,
bool Is_even_K, bool Varlen, class Element, class ElementPartial, class ArchTag_>
class FlashAttnFwdCombine {
public:
// Type Aliases
using TileShape_MK = TileShape_MK_;
using ArchTag = ArchTag_;
static constexpr int kMaxSplits = 1 << kLogMaxSplits_;
static constexpr int AlignmentLSE = std::min(AlignmentLSE_, int(128 / 8 / sizeof(float)));
static_assert(AlignmentLSE >= 1);
static constexpr int kStages = 4;
static_assert(ArchTag::kMinComputeCapability >= 75);
static constexpr bool Has_cp_async = ArchTag::kMinComputeCapability >= 80;
static constexpr uint32_t MaxThreadsPerBlock = kNThreads;
static constexpr uint32_t MinBlocksPerMultiprocessor = 2;
static constexpr int kBlockM = get<0>(TileShape_MK{});
static constexpr int kBlockK = get<1>(TileShape_MK{});
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(ElementPartial);
static_assert(kBlockK % kGmemElemsPerLoad == 0, "kBlockK must be a multiple of kGmemElemsPerLoad");
static constexpr int kBlockKGmem = kBlockK % 128 == 0 ? 128 : (kBlockK % 64 == 0 ? 64 : 32);
static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerLoad;
static_assert(MaxThreadsPerBlock % kGmemThreadsPerRow == 0, "MaxThreadsPerBlock must be a multiple of kGmemThreadsPerRow");
using GmemCopyAtom = std::conditional_t<
Has_cp_async,
cute::Copy_Atom<SM80_CP_ASYNC_CACHEGLOBAL<uint128_t>, ElementPartial>,
cute::Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementPartial>
>;
using GmemLayoutAtom = Layout<Shape <Int<MaxThreadsPerBlock / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
static_assert(kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0);
using GmemTiledCopyAccum = decltype(
make_tiled_copy(GmemCopyAtom{},
GmemLayoutAtom{},
Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{})); // Val layout, 4 vals per load
using GmemTiledCopy = decltype(
make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
GmemLayoutAtom{},
Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{})); // Val layout, 4 vals per load
using AlignmentTypeLSE = cute::uint_byte_t<static_cast<int>(sizeof(float)) * AlignmentLSE>;
static constexpr int kGmemElemsPerLoadLSE = sizeof(AlignmentTypeLSE) / sizeof(float);
static_assert(kBlockM % kGmemElemsPerLoadLSE == 0, "kBlockM must be a multiple of kGmemElemsPerLoadLSE");
static_assert(kBlockM % 8 == 0, "kBlockM must be a multiple of 8");
static constexpr int kBlockMSmem = kBlockM % 128 == 0 ? 128 : (kBlockM % 64 == 0 ? 64 : (kBlockM % 32 == 0 ? 32 : (kBlockM % 16 == 0 ? 16 : 8)));
static constexpr int kGmemThreadsPerRowLSE = kBlockMSmem / kGmemElemsPerLoadLSE;
static_assert(MaxThreadsPerBlock % kGmemThreadsPerRowLSE == 0, "MaxThreadsPerBlock must be a multiple of kGmemThreadsPerRowLSE");
using GmemLayoutAtomLSE = Layout<Shape <Int<MaxThreadsPerBlock / kGmemThreadsPerRowLSE>, Int<kGmemThreadsPerRowLSE>>,
Stride<Int<kGmemThreadsPerRowLSE>, _1>>;
static_assert(kMaxSplits % CUTE_STATIC_V(shape<0>(GmemLayoutAtomLSE{})) == 0);
using GmemCopyAtomLSE = std::conditional_t<
Has_cp_async,
cute::Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<AlignmentTypeLSE>, float>,
cute::Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<AlignmentLSE * sizeof(float) * 8>, float>
>;
using GmemTiledCopyLSE = decltype(
make_tiled_copy(GmemCopyAtomLSE{},
GmemLayoutAtomLSE{},
Layout<Shape<_1, Int<kGmemElemsPerLoadLSE>>>{})); // Val layout, 4 vals per load
// Otherwise we get IMA when some threads access sLSE, as we're not doing any masking
static_assert((kBlockM * kMaxSplits * AlignmentLSE) % kNThreads == 0, "kNThreads must divide kBlockM * kMaxSplits * AlignmentLSE");
// This works for kBlockMSmem = 8, 16, 32, 64, 128, no bank conflicts
using SmemLSESwizzle = std::conditional_t<
kBlockMSmem == 8,
Swizzle<5, 0, 5>,
std::conditional_t<kBlockMSmem == 16, Swizzle<4, 0, 4>, Swizzle<3, 2, 3>>
>;
using SmemLayoutAtomLSE =
decltype(composition(SmemLSESwizzle{},
Layout<Shape<Int<8>, Int<kBlockMSmem>>,
Stride<Int<kBlockMSmem>, _1>>{}));
using SmemLayoutLSE = decltype(tile_to_shape(SmemLayoutAtomLSE{}, Shape<Int<kMaxSplits>, Int<kBlockM>>{}));
using SmemLayoutO = Layout<Shape<Int<kBlockM>, Int<kBlockK>, Int<kStages>>,
Stride<Int<kBlockK>, _1, Int<kBlockM * kBlockK>>>;
// We want each column (kMaxSplits) to be processed by threads in the same warp.
// To reduce the number of shuffles, we want as few threads on the same column as possible.
// E.g., if kBlockM is divisible by 64, and there are 256 threads, we want 4 threads (0, 1, 2, 4) per column
// have have 64 such quads.
static_assert(MaxThreadsPerBlock % kBlockMSmem == 0, "MaxThreadsPerBlock must be a multiple of kBlockMSmem");
static constexpr int kSmemThreadsPerColLSEt = MaxThreadsPerBlock / kBlockMSmem;
static_assert(cutlass::NumThreadsPerWarp % kSmemThreadsPerColLSEt == 0, "kSmemThreadsPerColLSEt must divide NumThreadsPerWarp");
using S2RLayoutAtomLSE = Layout<Shape<Int<kSmemThreadsPerColLSEt>, Int<MaxThreadsPerBlock / kSmemThreadsPerColLSEt>>>;
using S2RTiledCopyLSE = decltype(make_tiled_copy(cute::Copy_Atom<cute::DefaultCopy, float>{}, S2RLayoutAtomLSE{}, Layout<_1>{}));
using ShapeOPartial = cute::Shape<int32_t, int32_t, int32_t, int32_t, int32_t>; // (seqlen, d, num_splits, head, batch)
using StrideOPartial = cute::Stride<int64_t, _1, int64_t, int64_t, int64_t>;
using ShapeLSEPartial = cute::Shape<int32_t, int32_t, int32_t, int32_t>; // (seqlen, num_splits, head, batch)
using StrideLSEPartial = cute::Stride<_1, int64_t, int64_t, int64_t>; // (seqlen, num_splits, head, batch)
using ShapeO = cute::Shape<int32_t, int32_t, int32_t, int32_t>; // (seqlen, d, head, batch)
using StrideO = cute::Stride<int64_t, _1, int64_t, int64_t>;
using ShapeLSE = cute::Shape<int32_t, int32_t, int32_t>; // (seqlen, head, batch)
using StrideLSE = cute::Stride<_1, int64_t, int64_t>; // (seqlen, head, batch)
struct SharedStorage : cute::aligned_struct<128> {
cute::array_aligned<float, cute::cosize_v<SmemLayoutLSE>> smem_lse_partial;
cute::array_aligned<int, kBlockM> smem_max_valid_split;
cute::array_aligned<ElementPartial, cute::cosize_v<SmemLayoutO>> smem_o_partial;
};
static constexpr int SharedStorageSize = sizeof(SharedStorage);
// Device side arguments
struct Arguments {
ElementPartial const* const ptr_O_partial;
ShapeOPartial const shape_O_partial;
StrideOPartial const stride_O_partial;
float const* const ptr_LSE_partial;
ShapeLSEPartial const shape_LSE_partial;
StrideLSEPartial const stride_LSE_partial;
Element* const ptr_O;
StrideO const stride_O;
float* const ptr_LSE;
StrideLSE const stride_LSE;
int const* const cu_seqlens = nullptr;
int const* const seqused = nullptr;
int const* const num_splits_dynamic_ptr = nullptr;
int* const semaphore_to_reset = nullptr;
};
// Kernel entry point API
struct Params {
ElementPartial const* const ptr_O_partial;
ShapeOPartial const shape_O_partial;
StrideOPartial const stride_O_partial;
float const* const ptr_LSE_partial;
ShapeLSEPartial const shape_LSE_partial;
StrideLSEPartial const stride_LSE_partial;
Element* const ptr_O;
StrideO const stride_O;
float* const ptr_LSE;
StrideLSE const stride_LSE;
cutlass::FastDivmod seqlen_divmod, head_divmod;
int const* const cu_seqlens = nullptr;
int const* const seqused = nullptr;
int const* const num_splits_dynamic_ptr = nullptr;
int* const semaphore_to_reset = nullptr;
};
// Convert to underlying arguments. In this case, a simple copy for the aliased type.
static
Params
to_underlying_arguments(Arguments const& args) {
assert(get<1>(args.shape_LSE_partial) <= kMaxSplits);
return {
args.ptr_O_partial,
args.shape_O_partial,
args.stride_O_partial,
args.ptr_LSE_partial,
args.shape_LSE_partial,
args.stride_LSE_partial,
args.ptr_O,
args.stride_O,
args.ptr_LSE,
args.stride_LSE,
cutlass::FastDivmod(get<0>(args.shape_LSE_partial)), cutlass::FastDivmod(get<2>(args.shape_LSE_partial)),
args.cu_seqlens,
args.seqused,
args.num_splits_dynamic_ptr,
args.semaphore_to_reset
};
}
CUTLASS_DEVICE
void
operator()(Params const& params, char* smem_buf) {
SharedStorage& shared_storage = *reinterpret_cast<SharedStorage*>(smem_buf);
Tensor sLSE = make_tensor(make_smem_ptr(shared_storage.smem_lse_partial.data()), SmemLayoutLSE{});
Tensor sMaxValidSplit = make_tensor(make_smem_ptr(shared_storage.smem_max_valid_split.data()), Shape<Int<kBlockM>>{});
Tensor sO = make_tensor(make_smem_ptr(shared_storage.smem_o_partial.data()), SmemLayoutO{});
int const thread_idx = threadIdx.x;
int const m_block = blockIdx.x;
int const k_block = blockIdx.y;
int const batch = blockIdx.z;
int const num_splits = params.num_splits_dynamic_ptr ? params.num_splits_dynamic_ptr[batch] : get<1>(params.shape_LSE_partial);
if (params.semaphore_to_reset && threadIdx.x == 0 && blockIdx.x == gridDim.x - 1 && blockIdx.y == gridDim.y - 1 && blockIdx.z == gridDim.z - 1) {
cutlass::arch::wait_on_dependent_grids();
*params.semaphore_to_reset = 0;
}
if (num_splits <= 1) { return; }
flash::SeqlenInfo<Varlen, kBlockM> seqlen_info{batch, size<0>(params.shape_LSE_partial), params.cu_seqlens, params.seqused};
int const offset = seqlen_info.offset;
int const seqlen = seqlen_info.seqlen;
int max_idx = seqlen * get<2>(params.shape_LSE_partial);
if constexpr (Varlen) {
if (m_block * kBlockM >= max_idx) { return; }
}
cutlass::FastDivmod seqlen_divmod_dynamic(seqlen);
// Step 1: load LSE_partial from gmem -> smem
Tensor mLSEpartial = make_tensor(make_gmem_ptr(params.ptr_LSE_partial + offset * get<0>(params.stride_LSE_partial)),
select<1, 0, 2, 3>(params.shape_LSE_partial),
select<1, 0, 2, 3>(params.stride_LSE_partial))(_, _, _, !Varlen ? batch : 0); // (num_splits, seqlen, head)
Tensor mLSEpartial_copy = cute::tiled_divide(mLSEpartial, Shape<_1, Int<kGmemElemsPerLoadLSE>>{});
GmemTiledCopyLSE gmem_tiled_copy_LSE;
auto gmem_thr_copy_LSE = gmem_tiled_copy_LSE.get_thread_slice(thread_idx);
Tensor tLSEsLSE = gmem_thr_copy_LSE.partition_D(sLSE);
// Construct identity layout for sLSE
Tensor cLSE = make_identity_tensor(make_shape(size<0>(sLSE), size<1>(sLSE))); // (NUM_SPLITS, BLK_M) -> (num_splits, blk_m)
// Repeat the partitioning with identity layouts
Tensor tLSEcLSE = gmem_thr_copy_LSE.partition_S(cLSE);
cutlass::arch::wait_on_dependent_grids();
#pragma unroll
for (int m = 0; m < size<2>(tLSEcLSE); ++m) {
int mi = int(get<1>(tLSEcLSE(_0{}, _0{}, m)));
int idx = m_block * kBlockM + mi;
if (idx < max_idx) {
int m_idx, bidh;
if constexpr (!Varlen) {
bidh = params.seqlen_divmod.divmod(m_idx, idx);
} else {
bidh = seqlen_divmod_dynamic.divmod(m_idx, idx);
}
Tensor mLSEpartial_cur_copy = mLSEpartial_copy(_, _, m_idx, bidh);
#pragma unroll
for (int s = 0; s < size<1>(tLSEcLSE); ++s) {
int si = get<0>(tLSEcLSE(_0{}, s, _0{}));
// if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && thread_idx < 32) { printf("thread_idx = %d, m = %d, s = %d, addr = %p, bank = %d\n", thread_idx, m, s, reinterpret_cast<float *>(&(tLSEsLSE(_0{}, s, m))), reinterpret_cast<int>(&(tLSEsLSE(_0{}, s, m))) / 4 % 32);}
if (si < num_splits) {
cute::copy(gmem_tiled_copy_LSE, mLSEpartial_cur_copy(_, si), tLSEsLSE(_, s, m));
} else {
cute::fill(tLSEsLSE(_, s, m), -INFINITY);
}
}
} else {
// We don't need to zero out the rest of the LSEs, as we will not write the output to gmem
// cute::fill(tLSEsLSE(_, _, m), -INFINITY);
}
}
if constexpr (Has_cp_async) { cute::cp_async_fence(); }
// Step 2: Load O_partial from gmem -> smem for split = 0, 1, ..., kStages - 2.
// We want these async loads to be in flight as we compute the LSE.
GmemTiledCopyAccum gmem_tiled_copy_O_partial;
auto gmem_thr_copy_O_partial = gmem_tiled_copy_O_partial.get_thread_slice(thread_idx);
// Construct identity layout for gO
Tensor cO = cute::make_identity_tensor(TileShape_MK{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
// Repeat the partitioning with identity layouts
Tensor tOcO = gmem_thr_copy_O_partial.partition_D(cO);
Tensor mOpartial = make_tensor(make_gmem_ptr(params.ptr_O_partial + offset * get<0>(params.stride_O_partial)),
params.shape_O_partial, params.stride_O_partial)(_, _, _, _, !Varlen ? batch : 0); // (seqlen, d, num_splits, head)
// Precompute these values to avoid recomputing them in the loop
Tensor tOmidx = make_tensor<int>(make_shape(size<1>(tOcO)));
Tensor tObidh = make_tensor<int>(make_shape(size<1>(tOcO)));
Tensor tOrOptr = make_tensor<ElementPartial const*>(make_shape(size<1>(tOcO)));
#pragma unroll
for (int m = 0; m < size<1>(tOcO); ++m) {
int mi = get<0>(tOcO(_0{}, m, _0{}));
int idx = m_block * kBlockM + mi;
if constexpr (!Varlen) {
tObidh(m) = params.seqlen_divmod.divmod(tOmidx(m), idx);
} else {
tObidh[m] = seqlen_divmod_dynamic.divmod(tOmidx(m), idx);
}
tOrOptr[m] = &mOpartial(tOmidx(m), k_block * kBlockK, _0{}, tObidh(m));
if (idx >= max_idx) {
tObidh[m] = -1;
}
}
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOcO)));
if constexpr (!(Is_even_K)) {
#pragma unroll
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(_0{}, _0{}, k)) < get<1>(params.shape_O_partial) - k_block * kBlockK; }
}
Tensor tOsOpartial = gmem_thr_copy_O_partial.partition_D(sO);
auto load_O_partial = [&] (int split, int stage) {
Tensor tOsOpartial_cur = tOsOpartial(_, _, _, stage);
#pragma unroll
for (int m = 0; m < size<1>(tOcO); ++m) {
if (tObidh(m) >= 0) {
Tensor mOpartial_cur = make_tensor(make_gmem_ptr(tOrOptr[m]), mOpartial(_0{}, _, _, _0{}).layout());
Tensor mOpartial_cur_copy = cute::tiled_divide(mOpartial_cur, Shape<Int<kGmemElemsPerLoad>>{});
#pragma unroll
for (int k = 0; k < size<2>(tOcO); ++k) {
int k_idx = get<1>(tOcO(_0{}, _0{}, k)) / kGmemElemsPerLoad;
if (Is_even_K || tOpO(k)) {
cute::copy(gmem_tiled_copy_O_partial, mOpartial_cur_copy(_, k_idx, split), tOsOpartial_cur(_, m, k));
}
}
}
}
};
for (int s = 0; s < kStages - 1; ++s) {
if (s < num_splits) { load_O_partial(s, s); }
if constexpr (Has_cp_async) { cute::cp_async_fence(); }
}
// Step 3: load and transpose LSE_partial from smem -> rmem
if constexpr (Has_cp_async) { cutlass::arch::cp_async_wait<kStages - 1>(); }
__syncthreads();
S2RTiledCopyLSE s2r_tiled_copy_LSE;
auto s2r_thr_copy_LSE = s2r_tiled_copy_LSE.get_thread_slice(thread_idx);
Tensor ts2rsLSE = s2r_thr_copy_LSE.partition_S(sLSE);
Tensor ts2rrLSE = make_fragment_like(ts2rsLSE);
cute::copy(s2r_tiled_copy_LSE, ts2rsLSE, ts2rrLSE);
// Step 4: compute the final LSE along the split dimension
Tensor lse_sum = make_tensor<float>(make_shape(size<2>(ts2rrLSE)));
Tensor ts2rcLSE = s2r_thr_copy_LSE.partition_D(cLSE);
// We compute the max valid split for each row to short-circuit the computation later
Tensor max_valid_split = make_tensor<int>(make_shape(size<2>(ts2rrLSE)));
static_assert(CUTE_STATIC_V(size<0>(ts2rrLSE)) == 1);
#pragma unroll
for (int m = 0; m < size<2>(ts2rrLSE); ++m) {
float lse_max = ts2rrLSE(_0{}, _0{}, m);
#pragma unroll
for (int s = 1; s < size<1>(ts2rrLSE); ++s) { lse_max = max(lse_max, ts2rrLSE(_0{}, s, m)); }
MaxOp<float> max_op;
lse_max = Allreduce<kSmemThreadsPerColLSEt>::run(lse_max, max_op);
int max_valid_idx = -1;
#pragma unroll
for (int s = 0; s < size<1>(ts2rrLSE); ++s) {
if (ts2rrLSE(_0{}, s, m) != -INFINITY) { max_valid_idx = get<0>(ts2rcLSE(_0{}, s, _0{})); }
}
MaxOp<int> max_int_op;
max_valid_split[m] = Allreduce<kSmemThreadsPerColLSEt>::run(max_valid_idx, max_int_op);
float lse_max_cur = lse_max == -INFINITY ? 0.0f : lse_max; // In case all local LSEs are -inf
float lse_sum_cur = 0.f;
#pragma unroll
for (int s = 0; s < size<1>(ts2rrLSE); ++s) {
float scale = expf(ts2rrLSE(_0{}, s, m) - lse_max_cur);
lse_sum_cur += scale;
// if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && thread_idx < 32) { printf("thread_idx = %d, m = %d, s = %d, addr = %p, bank = %d\n", thread_idx, m, s, reinterpret_cast<float *>(&(ts2rsLSE(_0{}, s, m))), reinterpret_cast<int>(&(ts2rsLSE(_0{}, s, m))) / 4 % 32);}
// ts2rsLSE(_0{}, m, s) = scale;
ts2rrLSE(_0{}, s, m) = scale;
}
SumOp<float> sum_op;
lse_sum_cur = Allreduce<kSmemThreadsPerColLSEt>::run(lse_sum_cur, sum_op);
lse_sum(m) = logf(lse_sum_cur) + lse_max;
float inv_sum = (lse_sum_cur == 0.f || lse_sum_cur != lse_sum_cur) ? 0.f : 1.f / lse_sum_cur;
#pragma unroll
for (int s = 0; s < size<1>(ts2rrLSE); ++s) { ts2rrLSE(_0{}, s, m) *= inv_sum; }
}
// Store the scales exp(lse - lse_logsum) back to smem
cute::copy(s2r_tiled_copy_LSE, ts2rrLSE, ts2rsLSE);
// Store max_valid_split to smem
#pragma unroll
for (int m = 0; m < size<2>(ts2rrLSE); ++m) {
if (get<0>(ts2rcLSE(_0{}, _0{}, m)) == 0) { // Only the thread responsible for s=0 writes to smem
int mi = int(get<1>(ts2rcLSE(_0{}, _0{}, m)));
if (mi < kBlockM) { sMaxValidSplit[mi] = max_valid_split[m]; }
}
}
// Step 5: store final LSE back to gmem
if (k_block == 0) {
auto shape_LSE = select<0, 2, 3>(params.shape_LSE_partial);
Tensor mLSE = make_tensor(make_gmem_ptr(params.ptr_LSE + offset * get<0>(params.stride_LSE)), shape_LSE, params.stride_LSE)(_, _, !Varlen ? batch : 0);
#pragma unroll
for (int m = 0; m < size<2>(ts2rrLSE); ++m) {
if (get<0>(ts2rcLSE(_0{}, _0{}, m)) == 0) { // Only the thread responsible for s=0 writes to gmem
int mi = int(get<1>(ts2rcLSE(_0{}, _0{}, m)));
int idx = m_block * kBlockM + mi;
if (idx < max_idx) {
int m_idx, bidh;
if constexpr (!Varlen) {
bidh = params.seqlen_divmod.divmod(m_idx, idx);
} else {
bidh = seqlen_divmod_dynamic.divmod(m_idx, idx);
}
// printf("thread_idx = %d, m = %d, mi = %d, idx = %d, m_idx = %d, bidh = %d, bidb = %d, lse_sum = %f\n", thread_idx, m, mi, idx, m_idx, bidh, bidb, lse_sum(m));
mLSE(m_idx, bidh) = lse_sum(m);
}
}
}
}
// Step 6: read O_partial from gmem -> smem -> rmem and accumulate the final O
__syncthreads();
int thr_max_valid_split = sMaxValidSplit[get<0>(tOcO(_0{}, _0{}, _0{}))];
#pragma unroll
for (int m = 1; m < size<1>(tOcO); ++m) { thr_max_valid_split = max(thr_max_valid_split, sMaxValidSplit[get<0>(tOcO(_0{}, m, _0{}))]); }
Layout tOrOpartial_layout = gmem_thr_copy_O_partial.partition_S(make_tensor<ElementPartial>(TileShape_MK{})).layout();
Tensor tOrOpartial = make_fragment_like<ElementPartial>(tOrOpartial_layout);
Tensor tOrO = make_fragment_like<float>(tOrOpartial);
clear(tOrO);
int stage_load = kStages - 1, stage_compute = 0;
#pragma unroll 4 // Already tuned for speed
for (int s = 0; s <= thr_max_valid_split; ++s) {
Tensor scale = make_tensor<float>(make_shape(size<1>(tOrOpartial)));
#pragma unroll
for (int m = 0; m < size<1>(tOrOpartial); ++m) { scale(m) = sLSE(s, get<0>(tOcO(_0{}, m, _0{}))); }
if (s + kStages - 1 <= thr_max_valid_split) { load_O_partial(s + kStages - 1, stage_load); }
if constexpr (Has_cp_async) { cute::cp_async_fence(); }
stage_load = stage_load < kStages - 1 ? stage_load + 1 : 0;
if constexpr (Has_cp_async) { cutlass::arch::cp_async_wait<kStages - 1>(); }
// We don't need __syncthreads() because each thread is just reading its own data from smem
cute::copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementPartial>{},
tOsOpartial(_, _, _, stage_compute), tOrOpartial);
stage_compute = stage_compute < kStages - 1 ? stage_compute + 1 : 0;
#pragma unroll
for (int m = 0; m < size<1>(tOrOpartial); ++m) {
if (tObidh(m) >= 0 && scale(m) > 0.f) {
#pragma unroll
for (int k = 0; k < size<2>(tOrOpartial); ++k) {
if (Is_even_K || tOpO(k)) {
Tensor rOpartial = make_tensor_like<float>(tOrOpartial(_, m, k));
flash::convert_type_out(tOrOpartial(_, m, k), rOpartial);
#pragma unroll
for (int i = 0; i < size<0>(tOrOpartial); ++i) {
tOrO(i, m, k) += scale(m) * rOpartial[i];
}
}
}
}
}
}
// Step 7: Write the final O to gmem
Tensor rO = make_tensor_like<Element>(tOrO);
flash::convert_type_out(tOrO, rO);
auto shape_O = make_shape(get<0>(params.shape_O_partial), get<1>(params.shape_O_partial) - k_block * kBlockK, get<3>(params.shape_O_partial), get<4>(params.shape_O_partial));
Tensor mO = make_tensor(make_gmem_ptr(params.ptr_O + offset * get<0>(params.stride_O) + k_block * kBlockK * get<1>(params.stride_O)),
shape_O, params.stride_O)(_, _, _, !Varlen ? batch : 0);
Tensor mO_copy = cute::tiled_divide(mO, Shape<_1, Int<kGmemElemsPerLoad>>{});
GmemTiledCopy gmem_tiled_copy_O;
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx);
#pragma unroll
for (int m = 0; m < size<1>(tOcO); ++m) {
if (tObidh(m) >= 0) {
#pragma unroll
for (int k = 0; k < size<2>(tOcO); ++k) {
int k_idx = get<1>(tOcO(_0{}, _0{}, k)) / kGmemElemsPerLoad;
if (Is_even_K || tOpO(k)) {
cute::copy(gmem_tiled_copy_O, rO(_, m, k), mO_copy(_, tOmidx(m), k_idx, tObidh(m)));
}
}
}
}
}
};
} // namespace flash