Divyasreepat
commited on
Update README.md with new model card content
Browse files
README.md
CHANGED
@@ -1,16 +1,203 @@
|
|
1 |
---
|
2 |
library_name: keras-hub
|
3 |
---
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: keras-hub
|
3 |
---
|
4 |
+
### Model Overview
|
5 |
+
BART encoder-decoder network.
|
6 |
+
|
7 |
+
This class implements a Transformer-based encoder-decoder model as
|
8 |
+
described in
|
9 |
+
["BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension"](https://arxiv.org/abs/1910.13461).
|
10 |
+
|
11 |
+
The default constructor gives a fully customizable, randomly initialized BART
|
12 |
+
model with any number of layers, heads, and embedding dimensions. To load
|
13 |
+
preset architectures and weights, use the `from_preset` constructor.
|
14 |
+
|
15 |
+
Disclaimer: Pre-trained models are provided on an "as is" basis, without
|
16 |
+
warranties or conditions of any kind. The underlying model is provided by a
|
17 |
+
third party and subject to a separate license, available
|
18 |
+
[here](https://github.com/facebookresearch/fairseq/).
|
19 |
+
|
20 |
+
|
21 |
+
__Arguments__
|
22 |
+
|
23 |
+
|
24 |
+
- __vocabulary_size__: int. The size of the token vocabulary.
|
25 |
+
- __num_layers__: int. The number of transformer encoder layers and
|
26 |
+
transformer decoder layers.
|
27 |
+
- __num_heads__: int. The number of attention heads for each transformer.
|
28 |
+
The hidden size must be divisible by the number of attention heads.
|
29 |
+
- __hidden_dim__: int. The size of the transformer encoding and pooler layers.
|
30 |
+
- __intermediate_dim__: int. The output dimension of the first Dense layer in
|
31 |
+
a two-layer feedforward network for each transformer.
|
32 |
+
- __dropout__: float. Dropout probability for the Transformer encoder.
|
33 |
+
- __max_sequence_length__: int. The maximum sequence length that this encoder
|
34 |
+
can consume. If None, `max_sequence_length` uses the value from
|
35 |
+
sequence length. This determines the variable shape for positional
|
36 |
+
embeddings.
|
37 |
+
|
38 |
+
### Example Usage
|
39 |
+
```python
|
40 |
+
import keras
|
41 |
+
import keras_hub
|
42 |
+
import numpy as np
|
43 |
+
```
|
44 |
+
|
45 |
+
Use `generate()` to do text generation, given an input context.
|
46 |
+
```python
|
47 |
+
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
|
48 |
+
bart_lm.generate("The quick brown fox", max_length=30)
|
49 |
+
|
50 |
+
# Generate with batched inputs.
|
51 |
+
bart_lm.generate(["The quick brown fox", "The whale"], max_length=30)
|
52 |
+
```
|
53 |
+
|
54 |
+
Compile the `generate()` function with a custom sampler.
|
55 |
+
```python
|
56 |
+
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
|
57 |
+
bart_lm.compile(sampler="greedy")
|
58 |
+
bart_lm.generate("The quick brown fox", max_length=30)
|
59 |
+
```
|
60 |
+
|
61 |
+
Use `generate()` with encoder inputs and an incomplete decoder input (prompt).
|
62 |
+
```python
|
63 |
+
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
|
64 |
+
bart_lm.generate(
|
65 |
+
{
|
66 |
+
"encoder_text": "The quick brown fox",
|
67 |
+
"decoder_text": "The fast"
|
68 |
+
}
|
69 |
+
)
|
70 |
+
```
|
71 |
+
|
72 |
+
Use `generate()` without preprocessing.
|
73 |
+
```python
|
74 |
+
# Preprocessed inputs, with encoder inputs corresponding to
|
75 |
+
# "The quick brown fox", and the decoder inputs to "The fast". Use
|
76 |
+
# `"padding_mask"` to indicate values that should not be overridden.
|
77 |
+
prompt = {
|
78 |
+
"encoder_token_ids": np.array([[0, 133, 2119, 6219, 23602, 2, 1, 1]]),
|
79 |
+
"encoder_padding_mask": np.array(
|
80 |
+
[[True, True, True, True, True, True, False, False]]
|
81 |
+
),
|
82 |
+
"decoder_token_ids": np.array([[2, 0, 133, 1769, 2, 1, 1]]),
|
83 |
+
"decoder_padding_mask": np.array([[True, True, True, True, False, False]])
|
84 |
+
}
|
85 |
+
|
86 |
+
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset(
|
87 |
+
"bart_base_en",
|
88 |
+
preprocessor=None,
|
89 |
+
)
|
90 |
+
bart_lm.generate(prompt)
|
91 |
+
```
|
92 |
+
|
93 |
+
Call `fit()` on a single batch.
|
94 |
+
```python
|
95 |
+
features = {
|
96 |
+
"encoder_text": ["The quick brown fox jumped.", "I forgot my homework."],
|
97 |
+
"decoder_text": ["The fast hazel fox leapt.", "I forgot my assignment."]
|
98 |
+
}
|
99 |
+
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
|
100 |
+
bart_lm.fit(x=features, batch_size=2)
|
101 |
+
```
|
102 |
+
|
103 |
+
Call `fit()` without preprocessing.
|
104 |
+
```python
|
105 |
+
x = {
|
106 |
+
"encoder_token_ids": np.array([[0, 133, 2119, 2, 1]] * 2),
|
107 |
+
"encoder_padding_mask": np.array([[1, 1, 1, 1, 0]] * 2),
|
108 |
+
"decoder_token_ids": np.array([[2, 0, 133, 1769, 2]] * 2),
|
109 |
+
"decoder_padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
|
110 |
+
}
|
111 |
+
y = np.array([[0, 133, 1769, 2, 1]] * 2)
|
112 |
+
sw = np.array([[1, 1, 1, 1, 0]] * 2)
|
113 |
+
|
114 |
+
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset(
|
115 |
+
"bart_base_en",
|
116 |
+
preprocessor=None,
|
117 |
+
)
|
118 |
+
bart_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
|
119 |
+
```
|
120 |
+
|
121 |
+
## Example Usage with Hugging Face URI
|
122 |
+
|
123 |
+
```python
|
124 |
+
import keras
|
125 |
+
import keras_hub
|
126 |
+
import numpy as np
|
127 |
+
```
|
128 |
+
|
129 |
+
Use `generate()` to do text generation, given an input context.
|
130 |
+
```python
|
131 |
+
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("hf://keras/bart_base_en")
|
132 |
+
bart_lm.generate("The quick brown fox", max_length=30)
|
133 |
+
|
134 |
+
# Generate with batched inputs.
|
135 |
+
bart_lm.generate(["The quick brown fox", "The whale"], max_length=30)
|
136 |
+
```
|
137 |
+
|
138 |
+
Compile the `generate()` function with a custom sampler.
|
139 |
+
```python
|
140 |
+
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("hf://keras/bart_base_en")
|
141 |
+
bart_lm.compile(sampler="greedy")
|
142 |
+
bart_lm.generate("The quick brown fox", max_length=30)
|
143 |
+
```
|
144 |
+
|
145 |
+
Use `generate()` with encoder inputs and an incomplete decoder input (prompt).
|
146 |
+
```python
|
147 |
+
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("hf://keras/bart_base_en")
|
148 |
+
bart_lm.generate(
|
149 |
+
{
|
150 |
+
"encoder_text": "The quick brown fox",
|
151 |
+
"decoder_text": "The fast"
|
152 |
+
}
|
153 |
+
)
|
154 |
+
```
|
155 |
+
|
156 |
+
Use `generate()` without preprocessing.
|
157 |
+
```python
|
158 |
+
# Preprocessed inputs, with encoder inputs corresponding to
|
159 |
+
# "The quick brown fox", and the decoder inputs to "The fast". Use
|
160 |
+
# `"padding_mask"` to indicate values that should not be overridden.
|
161 |
+
prompt = {
|
162 |
+
"encoder_token_ids": np.array([[0, 133, 2119, 6219, 23602, 2, 1, 1]]),
|
163 |
+
"encoder_padding_mask": np.array(
|
164 |
+
[[True, True, True, True, True, True, False, False]]
|
165 |
+
),
|
166 |
+
"decoder_token_ids": np.array([[2, 0, 133, 1769, 2, 1, 1]]),
|
167 |
+
"decoder_padding_mask": np.array([[True, True, True, True, False, False]])
|
168 |
+
}
|
169 |
+
|
170 |
+
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset(
|
171 |
+
"hf://keras/bart_base_en",
|
172 |
+
preprocessor=None,
|
173 |
+
)
|
174 |
+
bart_lm.generate(prompt)
|
175 |
+
```
|
176 |
+
|
177 |
+
Call `fit()` on a single batch.
|
178 |
+
```python
|
179 |
+
features = {
|
180 |
+
"encoder_text": ["The quick brown fox jumped.", "I forgot my homework."],
|
181 |
+
"decoder_text": ["The fast hazel fox leapt.", "I forgot my assignment."]
|
182 |
+
}
|
183 |
+
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("hf://keras/bart_base_en")
|
184 |
+
bart_lm.fit(x=features, batch_size=2)
|
185 |
+
```
|
186 |
+
|
187 |
+
Call `fit()` without preprocessing.
|
188 |
+
```python
|
189 |
+
x = {
|
190 |
+
"encoder_token_ids": np.array([[0, 133, 2119, 2, 1]] * 2),
|
191 |
+
"encoder_padding_mask": np.array([[1, 1, 1, 1, 0]] * 2),
|
192 |
+
"decoder_token_ids": np.array([[2, 0, 133, 1769, 2]] * 2),
|
193 |
+
"decoder_padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
|
194 |
+
}
|
195 |
+
y = np.array([[0, 133, 1769, 2, 1]] * 2)
|
196 |
+
sw = np.array([[1, 1, 1, 1, 0]] * 2)
|
197 |
+
|
198 |
+
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset(
|
199 |
+
"hf://keras/bart_base_en",
|
200 |
+
preprocessor=None,
|
201 |
+
)
|
202 |
+
bart_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
|
203 |
+
```
|