update model card README.md
Browse files
README.md
CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Precision: 0.
|
24 |
-
- Recall: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -43,22 +43,27 @@ More information needed
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 2e-05
|
46 |
-
- train_batch_size:
|
47 |
-
- eval_batch_size:
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- num_epochs:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
-
| Training Loss | Epoch | Step
|
56 |
-
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
### Framework versions
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0855
|
23 |
+
- Precision: 0.9424
|
24 |
+
- Recall: 0.9475
|
25 |
+
- F1: 0.9449
|
26 |
+
- Accuracy: 0.9801
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 30
|
47 |
+
- eval_batch_size: 30
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.0663 | 1.0 | 15954 | 0.0599 | 0.9417 | 0.9246 | 0.9331 | 0.9763 |
|
58 |
+
| 0.0471 | 2.0 | 31908 | 0.0514 | 0.9408 | 0.9442 | 0.9425 | 0.9795 |
|
59 |
+
| 0.0384 | 3.0 | 47862 | 0.0511 | 0.9419 | 0.9471 | 0.9445 | 0.9802 |
|
60 |
+
| 0.0292 | 4.0 | 63816 | 0.0558 | 0.9456 | 0.9449 | 0.9453 | 0.9804 |
|
61 |
+
| 0.0253 | 5.0 | 79770 | 0.0572 | 0.9421 | 0.9507 | 0.9464 | 0.9807 |
|
62 |
+
| 0.0225 | 6.0 | 95724 | 0.0649 | 0.9474 | 0.9435 | 0.9454 | 0.9805 |
|
63 |
+
| 0.0209 | 7.0 | 111678 | 0.0695 | 0.9409 | 0.9504 | 0.9456 | 0.9805 |
|
64 |
+
| 0.019 | 8.0 | 127632 | 0.0742 | 0.9431 | 0.9469 | 0.9450 | 0.9802 |
|
65 |
+
| 0.0178 | 9.0 | 143586 | 0.0799 | 0.9425 | 0.9477 | 0.9451 | 0.9802 |
|
66 |
+
| 0.016 | 10.0 | 159540 | 0.0855 | 0.9424 | 0.9475 | 0.9449 | 0.9801 |
|
67 |
|
68 |
|
69 |
### Framework versions
|