Isaac Zepeda
Initial and requeriments.txt
from typing import Dict, List, Any
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
import base64
from io import BytesIO
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
self.pipe =
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
data (:obj:):
includes the input data and the parameters for the inference.
A :obj:`dict`:. base64 encoded image
inputs = data.pop("inputs", data)
# run inference pipeline
with autocast(device.type):
image = self.pipe(inputs, guidance_scale=7.5)["sample"][0]
# encode image as base 64
buffered = BytesIO(), format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
# postprocess the prediction
return {"image": img_str.decode()}