kennethgoodman commited on
Commit
3a1cb2c
1 Parent(s): 4c8ef26

Upload PPO FrozenLake-v1 trained agent

Browse files
FrozenLake-v1-version_0_0_2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c064605462b6df61485fb18e89b29387fc80eee8f287bf26de4b5597994a7fa
3
+ size 156700
FrozenLake-v1-version_0_0_2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
FrozenLake-v1-version_0_0_2/data ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d632a41f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d632a4280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d632a4310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d632a43a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2d632a4430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2d632a44c0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d632a4550>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2d632a45e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d632a4670>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d632a4700>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d632a4790>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2d6329d7b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
25
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLEIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "n": 16,
27
+ "_shape": [],
28
+ "dtype": "int64",
29
+ "_np_random": null
30
+ },
31
+ "action_space": {
32
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
33
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
34
+ "n": 4,
35
+ "_shape": [],
36
+ "dtype": "int64",
37
+ "_np_random": null
38
+ },
39
+ "n_envs": 16,
40
+ "num_timesteps": 2506752,
41
+ "_total_timesteps": 2500000,
42
+ "_num_timesteps_at_start": 0,
43
+ "seed": null,
44
+ "action_noise": null,
45
+ "start_time": 1670428272486435293,
46
+ "learning_rate": 0.0003,
47
+ "tensorboard_log": null,
48
+ "lr_schedule": {
49
+ ":type:": "<class 'function'>",
50
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
51
+ },
52
+ "_last_obs": {
53
+ ":type:": "<class 'numpy.ndarray'>",
54
+ ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA0AAAAAAAAAAAAAAAAAAAAEAAAAAAAAAA0AAAAAAAAADgAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
55
+ },
56
+ "_last_episode_starts": {
57
+ ":type:": "<class 'numpy.ndarray'>",
58
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
59
+ },
60
+ "_last_original_obs": null,
61
+ "_episode_num": 0,
62
+ "use_sde": false,
63
+ "sde_sample_freq": -1,
64
+ "_current_progress_remaining": -0.0027007999999999477,
65
+ "ep_info_buffer": {
66
+ ":type:": "<class 'collections.deque'>",
67
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUSz2MAXSUR0CMVGT8HfMwdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CMVHkK/mDEdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVJHjp9qldX2UKGgGRwAAAAAAAAAAaAdLDWgIR0CMVIbpeNT+dX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVJMnJDE4dX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVJnhbW3CdX2UKGgGRwAAAAAAAAAAaAdLI2gIR0CMVKDgZTAGdX2UKGgGRz/wAAAAAAAAaAdLR2gIR0CMVKhKUVzqdX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CMVMHoHLRsdX2UKGgGRz/wAAAAAAAAaAdLK2gIR0CMVNeGfwqidX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVNsTnJT3dX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CMVOuKXOW0dX2UKGgGRz/wAAAAAAAAaAdLS2gIR0CMVO46Oo5xdX2UKGgGRz/wAAAAAAAAaAdLVGgIR0CMVPK0UoKEdX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CMVPzoUzsQdX2UKGgGRwAAAAAAAAAAaAdLKGgIR0CMVQOSW7e3dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVQ/2TPjXdX2UKGgGRz/wAAAAAAAAaAdLUWgIR0CMVReHi3ocdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CMVSIjW07bdX2UKGgGRwAAAAAAAAAAaAdLTGgIR0CMVROIInjRdX2UKGgGRwAAAAAAAAAAaAdLMWgIR0CMVRSuQp4KdX2UKGgGRz/wAAAAAAAAaAdLOGgIR0CMVSXP7el9dX2UKGgGRwAAAAAAAAAAaAdLGGgIR0CMVTNRm9QGdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVR3jdYW+dX2UKGgGRz/wAAAAAAAAaAdLG2gIR0CMVTc1wYLtdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVTyauwHJdX2UKGgGRz/wAAAAAAAAaAdLJGgIR0CMVTtMwlBydX2UKGgGRz/wAAAAAAAAaAdLR2gIR0CMVUAsCkoGdX2UKGgGRz/wAAAAAAAAaAdLGGgIR0CMVVRekYXPdX2UKGgGRwAAAAAAAAAAaAdLQGgIR0CMVU+6iCardX2UKGgGRz/wAAAAAAAAaAdLRWgIR0CMVVVFQVKxdX2UKGgGRwAAAAAAAAAAaAdLKWgIR0CMVWW0qpcYdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CMVXJ2dNFjdX2UKGgGRz/wAAAAAAAAaAdLQWgIR0CMVYClJpWWdX2UKGgGRz/wAAAAAAAAaAdLK2gIR0CMVXGmUGFBdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVXA+pwS8dX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CMVYSMcZLqdX2UKGgGRwAAAAAAAAAAaAdLLGgIR0CMVYQ9zOopdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CMVYOhkAggdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0CMVZvcafjCdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CMVYhqTKT0dX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVZZpztCzdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0CMVaaWHDaXdX2UKGgGRz/wAAAAAAAAaAdLKWgIR0CMVbxVhkRSdX2UKGgGRz/wAAAAAAAAaAdLP2gIR0CMVcVpsXSCdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVbgWJrLydX2UKGgGRwAAAAAAAAAAaAdLQWgIR0CMVeB0ZFXrdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CMVeXfqHGkdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0CMVeIYWLxadX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CMVfNqQA+7dX2UKGgGRz/wAAAAAAAAaAdLSmgIR0CMVfGWldkbdX2UKGgGRz/wAAAAAAAAaAdLW2gIR0CMVgfozN2UdX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CMVf4vexfOdX2UKGgGRz/wAAAAAAAAaAdLW2gIR0CMVgNUfgaWdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVh5Ec81XdX2UKGgGRz/wAAAAAAAAaAdLPGgIR0CMVhsVLzwudX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CMVijgQ6IWdX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CMVibTc6/7dX2UKGgGRz/wAAAAAAAAaAdLRmgIR0CMVjFBIFvAdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVjOh0yP/dX2UKGgGRz/wAAAAAAAAaAdLU2gIR0CMVkTzND+jdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CMVl2GIsRQdX2UKGgGRwAAAAAAAAAAaAdLMGgIR0CMVl65Xlr/dX2UKGgGRz/wAAAAAAAAaAdLXGgIR0CMVlvJA+pwdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CMVnLdvbXZdX2UKGgGRwAAAAAAAAAAaAdLE2gIR0CMVmcwQDmsdX2UKGgGRwAAAAAAAAAAaAdLJmgIR0CMVmgXdj5LdX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CMVn8b70nPdX2UKGgGRz/wAAAAAAAAaAdLTmgIR0CMVoVIqbz9dX2UKGgGRz/wAAAAAAAAaAdLXWgIR0CMVoTQE6kqdX2UKGgGRz/wAAAAAAAAaAdLYWgIR0CMVnymQ8wIdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVpWdVea8dX2UKGgGRz/wAAAAAAAAaAdLLGgIR0CMVpCCz1K5dX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVqVlf7aadX2UKGgGRwAAAAAAAAAAaAdLFGgIR0CMVpxDst03dX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CMVqxYaHbidX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMVqT+vQnhdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVr0fYBeYdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CMVrN2TxG2dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVsMBp5/tdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVru2qkuZdX2UKGgGRwAAAAAAAAAAaAdLTmgIR0CMVtVsk6cRdX2UKGgGRwAAAAAAAAAAaAdLJ2gIR0CMVsM8YAKfdX2UKGgGRz/wAAAAAAAAaAdLN2gIR0CMVtdznzQNdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0CMVtSofjjrdX2UKGgGRwAAAAAAAAAAaAdLEWgIR0CMVtF6zE75dX2UKGgGRz/wAAAAAAAAaAdLGWgIR0CMVt2Cdz4ldX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CMVurELpiadX2UKGgGRz/wAAAAAAAAaAdLImgIR0CMVxnLaEi/dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVxVmSQo1dX2UKGgGRz/wAAAAAAAAaAdLKGgIR0CMVyMoc7yQdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVzZuAI6bdX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CMVzB42S+ydX2UKGgGRz/wAAAAAAAAaAdLKmgIR0CMVydFOO81dX2UKGgGRz/wAAAAAAAAaAdLP2gIR0CMV00mdAgQdX2UKGgGRwAAAAAAAAAAaAdLEmgIR0CMV1P2wmmcdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMV2hVU+9rdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMV4AMlTm5dX2UKGgGRz/wAAAAAAAAaAdLHmgIR0CMV3yhBZ6ldX2UKGgGRwAAAAAAAAAAaAdLT2gIR0CMV303fhuPdWUu"
68
+ },
69
+ "ep_success_buffer": {
70
+ ":type:": "<class 'collections.deque'>",
71
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
72
+ },
73
+ "_n_updates": 612,
74
+ "n_steps": 1024,
75
+ "gamma": 0.999,
76
+ "gae_lambda": 0.98,
77
+ "ent_coef": 0.01,
78
+ "vf_coef": 0.5,
79
+ "max_grad_norm": 0.5,
80
+ "batch_size": 64,
81
+ "n_epochs": 4,
82
+ "clip_range": {
83
+ ":type:": "<class 'function'>",
84
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
85
+ },
86
+ "clip_range_vf": null,
87
+ "normalize_advantage": true,
88
+ "target_kl": null
89
+ }
FrozenLake-v1-version_0_0_2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:076e487a9776eab288de3e3019e76ceb562942976cdb43393039403bed8ce793
3
+ size 96057
FrozenLake-v1-version_0_0_2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e533cce85064fc42b3458d0cf1544b1d598dc3230d898cf33947305027960eb7
3
+ size 47297
FrozenLake-v1-version_0_0_2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
FrozenLake-v1-version_0_0_2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - FrozenLake-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: FrozenLake-v1
16
+ type: FrozenLake-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 0.90 +/- 0.30
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **FrozenLake-v1**
25
+ This is a trained model of a **PPO** agent playing **FrozenLake-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d632a41f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d632a4280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d632a4310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d632a43a0>", "_build": "<function ActorCriticPolicy._build at 0x7f2d632a4430>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d632a44c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d632a4550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d632a45e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d632a4670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d632a4700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d632a4790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2d6329d7b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLEIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 16, "_shape": [], "dtype": "int64", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2506752, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670428272486435293, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA0AAAAAAAAAAAAAAAAAAAAEAAAAAAAAAA0AAAAAAAAADgAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUSz2MAXSUR0CMVGT8HfMwdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CMVHkK/mDEdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVJHjp9qldX2UKGgGRwAAAAAAAAAAaAdLDWgIR0CMVIbpeNT+dX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVJMnJDE4dX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVJnhbW3CdX2UKGgGRwAAAAAAAAAAaAdLI2gIR0CMVKDgZTAGdX2UKGgGRz/wAAAAAAAAaAdLR2gIR0CMVKhKUVzqdX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CMVMHoHLRsdX2UKGgGRz/wAAAAAAAAaAdLK2gIR0CMVNeGfwqidX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVNsTnJT3dX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CMVOuKXOW0dX2UKGgGRz/wAAAAAAAAaAdLS2gIR0CMVO46Oo5xdX2UKGgGRz/wAAAAAAAAaAdLVGgIR0CMVPK0UoKEdX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CMVPzoUzsQdX2UKGgGRwAAAAAAAAAAaAdLKGgIR0CMVQOSW7e3dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVQ/2TPjXdX2UKGgGRz/wAAAAAAAAaAdLUWgIR0CMVReHi3ocdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CMVSIjW07bdX2UKGgGRwAAAAAAAAAAaAdLTGgIR0CMVROIInjRdX2UKGgGRwAAAAAAAAAAaAdLMWgIR0CMVRSuQp4KdX2UKGgGRz/wAAAAAAAAaAdLOGgIR0CMVSXP7el9dX2UKGgGRwAAAAAAAAAAaAdLGGgIR0CMVTNRm9QGdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVR3jdYW+dX2UKGgGRz/wAAAAAAAAaAdLG2gIR0CMVTc1wYLtdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVTyauwHJdX2UKGgGRz/wAAAAAAAAaAdLJGgIR0CMVTtMwlBydX2UKGgGRz/wAAAAAAAAaAdLR2gIR0CMVUAsCkoGdX2UKGgGRz/wAAAAAAAAaAdLGGgIR0CMVVRekYXPdX2UKGgGRwAAAAAAAAAAaAdLQGgIR0CMVU+6iCardX2UKGgGRz/wAAAAAAAAaAdLRWgIR0CMVVVFQVKxdX2UKGgGRwAAAAAAAAAAaAdLKWgIR0CMVWW0qpcYdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CMVXJ2dNFjdX2UKGgGRz/wAAAAAAAAaAdLQWgIR0CMVYClJpWWdX2UKGgGRz/wAAAAAAAAaAdLK2gIR0CMVXGmUGFBdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVXA+pwS8dX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CMVYSMcZLqdX2UKGgGRwAAAAAAAAAAaAdLLGgIR0CMVYQ9zOopdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CMVYOhkAggdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0CMVZvcafjCdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CMVYhqTKT0dX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVZZpztCzdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0CMVaaWHDaXdX2UKGgGRz/wAAAAAAAAaAdLKWgIR0CMVbxVhkRSdX2UKGgGRz/wAAAAAAAAaAdLP2gIR0CMVcVpsXSCdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVbgWJrLydX2UKGgGRwAAAAAAAAAAaAdLQWgIR0CMVeB0ZFXrdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CMVeXfqHGkdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0CMVeIYWLxadX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CMVfNqQA+7dX2UKGgGRz/wAAAAAAAAaAdLSmgIR0CMVfGWldkbdX2UKGgGRz/wAAAAAAAAaAdLW2gIR0CMVgfozN2UdX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CMVf4vexfOdX2UKGgGRz/wAAAAAAAAaAdLW2gIR0CMVgNUfgaWdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVh5Ec81XdX2UKGgGRz/wAAAAAAAAaAdLPGgIR0CMVhsVLzwudX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CMVijgQ6IWdX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CMVibTc6/7dX2UKGgGRz/wAAAAAAAAaAdLRmgIR0CMVjFBIFvAdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVjOh0yP/dX2UKGgGRz/wAAAAAAAAaAdLU2gIR0CMVkTzND+jdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CMVl2GIsRQdX2UKGgGRwAAAAAAAAAAaAdLMGgIR0CMVl65Xlr/dX2UKGgGRz/wAAAAAAAAaAdLXGgIR0CMVlvJA+pwdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CMVnLdvbXZdX2UKGgGRwAAAAAAAAAAaAdLE2gIR0CMVmcwQDmsdX2UKGgGRwAAAAAAAAAAaAdLJmgIR0CMVmgXdj5LdX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CMVn8b70nPdX2UKGgGRz/wAAAAAAAAaAdLTmgIR0CMVoVIqbz9dX2UKGgGRz/wAAAAAAAAaAdLXWgIR0CMVoTQE6kqdX2UKGgGRz/wAAAAAAAAaAdLYWgIR0CMVnymQ8wIdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVpWdVea8dX2UKGgGRz/wAAAAAAAAaAdLLGgIR0CMVpCCz1K5dX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVqVlf7aadX2UKGgGRwAAAAAAAAAAaAdLFGgIR0CMVpxDst03dX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CMVqxYaHbidX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMVqT+vQnhdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVr0fYBeYdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CMVrN2TxG2dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVsMBp5/tdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVru2qkuZdX2UKGgGRwAAAAAAAAAAaAdLTmgIR0CMVtVsk6cRdX2UKGgGRwAAAAAAAAAAaAdLJ2gIR0CMVsM8YAKfdX2UKGgGRz/wAAAAAAAAaAdLN2gIR0CMVtdznzQNdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0CMVtSofjjrdX2UKGgGRwAAAAAAAAAAaAdLEWgIR0CMVtF6zE75dX2UKGgGRz/wAAAAAAAAaAdLGWgIR0CMVt2Cdz4ldX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CMVurELpiadX2UKGgGRz/wAAAAAAAAaAdLImgIR0CMVxnLaEi/dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVxVmSQo1dX2UKGgGRz/wAAAAAAAAaAdLKGgIR0CMVyMoc7yQdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVzZuAI6bdX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CMVzB42S+ydX2UKGgGRz/wAAAAAAAAaAdLKmgIR0CMVydFOO81dX2UKGgGRz/wAAAAAAAAaAdLP2gIR0CMV00mdAgQdX2UKGgGRwAAAAAAAAAAaAdLEmgIR0CMV1P2wmmcdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMV2hVU+9rdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMV4AMlTm5dX2UKGgGRz/wAAAAAAAAaAdLHmgIR0CMV3yhBZ6ldX2UKGgGRwAAAAAAAAAAaAdLT2gIR0CMV303fhuPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 612, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 0.9, "std_reward": 0.30000000000000004, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T16:06:26.304604"}