End of training
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: message-genre
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# message-genre
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.5875
|
21 |
+
- Accuracy: 0.4339
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 16
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 1.0
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| No log | 0.06 | 100 | 1.8239 | 0.3638 |
|
53 |
+
| No log | 0.13 | 200 | 1.7266 | 0.3971 |
|
54 |
+
| No log | 0.19 | 300 | 1.6873 | 0.4040 |
|
55 |
+
| No log | 0.25 | 400 | 1.6609 | 0.4188 |
|
56 |
+
| 1.8118 | 0.32 | 500 | 1.6674 | 0.4048 |
|
57 |
+
| 1.8118 | 0.38 | 600 | 1.6381 | 0.4172 |
|
58 |
+
| 1.8118 | 0.45 | 700 | 1.6437 | 0.4156 |
|
59 |
+
| 1.8118 | 0.51 | 800 | 1.6378 | 0.4143 |
|
60 |
+
| 1.8118 | 0.57 | 900 | 1.6301 | 0.4214 |
|
61 |
+
| 1.6738 | 0.64 | 1000 | 1.6106 | 0.4320 |
|
62 |
+
| 1.6738 | 0.7 | 1100 | 1.6089 | 0.4259 |
|
63 |
+
| 1.6738 | 0.76 | 1200 | 1.5988 | 0.4299 |
|
64 |
+
| 1.6738 | 0.83 | 1300 | 1.5951 | 0.4347 |
|
65 |
+
| 1.6738 | 0.89 | 1400 | 1.5896 | 0.4320 |
|
66 |
+
| 1.6488 | 0.96 | 1500 | 1.5875 | 0.4339 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.32.1
|
72 |
+
- Pytorch 2.0.1
|
73 |
+
- Datasets 2.14.4
|
74 |
+
- Tokenizers 0.13.3
|