Upload InpaintReward.py
Browse files- InpaintReward.py +228 -0
InpaintReward.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import clip
|
4 |
+
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
5 |
+
from torchvision import transforms
|
6 |
+
|
7 |
+
|
8 |
+
class MLP(nn.Module):
|
9 |
+
def __init__(self, input_size):
|
10 |
+
super().__init__()
|
11 |
+
self.input_size = input_size
|
12 |
+
|
13 |
+
self.layers = nn.Sequential(
|
14 |
+
nn.Linear(self.input_size, 512),
|
15 |
+
nn.Dropout(0.2),
|
16 |
+
nn.Linear(512, 256),
|
17 |
+
)
|
18 |
+
self.last_layer = nn.Linear(256, 1, bias=False)
|
19 |
+
self.last_layer_weight = self.last_layer.weight
|
20 |
+
# initial MLP param
|
21 |
+
for name, param in self.layers.named_parameters():
|
22 |
+
if 'weight' in name:
|
23 |
+
nn.init.normal_(param, mean=0.0, std=1.0/(self.input_size+1))
|
24 |
+
if 'bias' in name:
|
25 |
+
nn.init.constant_(param, val=0)
|
26 |
+
|
27 |
+
for name, param in self.last_layer.named_parameters():
|
28 |
+
if 'weight' in name:
|
29 |
+
nn.init.normal_(param, mean=0.0, std=1.0/(self.input_size+1))
|
30 |
+
if 'bias' in name:
|
31 |
+
nn.init.constant_(param, val=0)
|
32 |
+
|
33 |
+
def forward(self, input):
|
34 |
+
features = self.layers(input)
|
35 |
+
out = self.last_layer(features)
|
36 |
+
return out, features
|
37 |
+
|
38 |
+
|
39 |
+
class ViTBlock(nn.Module):
|
40 |
+
def __init__(self, feature_dim, num_heads, mlp_dim, dropout=0.1):
|
41 |
+
super(ViTBlock, self).__init__()
|
42 |
+
# Transformer encoder layer
|
43 |
+
self.encoder_layer = TransformerEncoderLayer(
|
44 |
+
d_model=feature_dim,
|
45 |
+
nhead=num_heads,
|
46 |
+
dim_feedforward=mlp_dim,
|
47 |
+
dropout=dropout,
|
48 |
+
batch_first=True # Input shape: (batch_size, seq_length, feature_dim)
|
49 |
+
)
|
50 |
+
self.transformer_encoder = TransformerEncoder(self.encoder_layer, num_layers=1)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
x = self.transformer_encoder(x)
|
54 |
+
return x
|
55 |
+
|
56 |
+
|
57 |
+
class ImageReward(nn.Module):
|
58 |
+
def __init__(self, config, device='cpu'):
|
59 |
+
super().__init__()
|
60 |
+
self.config = config
|
61 |
+
self.device = device
|
62 |
+
|
63 |
+
self.clip_model, self.preprocess = clip.load("ViT-B/32")
|
64 |
+
self.clip_model = self.clip_model.float()
|
65 |
+
self.mlp = MLP(self.config['ImageReward']['mlp_dim'])
|
66 |
+
self.vit_block = ViTBlock(self.config["ViT"]["feature_dim"], self.config["ViT"]["num_heads"], self.config["ViT"]["mlp_dim"])
|
67 |
+
|
68 |
+
self.toImage = transforms.ToPILImage()
|
69 |
+
|
70 |
+
self.mean = 0.4064 #0.65823
|
71 |
+
self.std = 2.3021 #8.5400
|
72 |
+
|
73 |
+
if self.config.fix_base:
|
74 |
+
self.clip_model.requires_grad_(False)
|
75 |
+
|
76 |
+
def score(self, inpaint_list, masks_rgb):
|
77 |
+
|
78 |
+
inpaint_embeds_bs, mask_rgb_embeds_bs = [], []
|
79 |
+
|
80 |
+
for bs in range(len(inpaint_list)):
|
81 |
+
if isinstance(inpaint_list[bs], torch.Tensor):
|
82 |
+
inpaint = self.toImage(inpaint_list[bs])
|
83 |
+
else:
|
84 |
+
inpaint = inpaint_list[bs]
|
85 |
+
inpaint = self.preprocess(inpaint).unsqueeze(0)
|
86 |
+
if isinstance(masks_rgb[bs], torch.Tensor):
|
87 |
+
mask_rgb = self.toImage(masks_rgb[bs])
|
88 |
+
else:
|
89 |
+
mask_rgb = masks_rgb[bs]
|
90 |
+
mask_rgb = self.preprocess(masks_rgb[bs]).unsqueeze(0)
|
91 |
+
inpt, msk = inpaint.to(self.device), mask_rgb.to(self.device)
|
92 |
+
|
93 |
+
inpt_embeds = self.clip_model.encode_image(inpt).to(torch.float32)
|
94 |
+
msk_embeds = self.clip_model.encode_image(msk).to(torch.float32)
|
95 |
+
|
96 |
+
inpaint_embeds_bs.append(inpt_embeds.squeeze(0))
|
97 |
+
mask_rgb_embeds_bs.append(msk_embeds.squeeze(0))
|
98 |
+
|
99 |
+
|
100 |
+
emb_inpaint = torch.stack(inpaint_embeds_bs, dim=0)
|
101 |
+
emb_mask_rgb = torch.stack(mask_rgb_embeds_bs, dim=0)
|
102 |
+
|
103 |
+
emb_feature = torch.cat((emb_inpaint, emb_mask_rgb), dim=-1)
|
104 |
+
emb_feature = emb_feature.unsqueeze(1)
|
105 |
+
emb_feature = self.vit_block(emb_feature) # 1024
|
106 |
+
|
107 |
+
scores, last_features = self.mlp(emb_feature)
|
108 |
+
scores = torch.squeeze(scores)
|
109 |
+
last_features = torch.squeeze(last_features)
|
110 |
+
|
111 |
+
if self.config.group:
|
112 |
+
scores = (scores - self.mean) / self.std
|
113 |
+
|
114 |
+
|
115 |
+
return scores.detach().cpu().numpy().tolist(), last_features.detach().cpu().numpy().tolist()
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
def load_model(self, model, ckpt_path = None):
|
120 |
+
|
121 |
+
print('load checkpoint from %s'%ckpt_path)
|
122 |
+
state_dict = {k: v for k, v in torch.load(ckpt_path, map_location='cpu').items()}
|
123 |
+
new_dict = {key.replace("module.", ""): value for key, value in state_dict.items()}
|
124 |
+
model.load_state_dict(new_dict)
|
125 |
+
|
126 |
+
return model
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
class ImageRewardGroup(nn.Module):
|
131 |
+
def __init__(self, config, device='cpu'):
|
132 |
+
super().__init__()
|
133 |
+
self.config = config
|
134 |
+
self.device = device
|
135 |
+
|
136 |
+
self.clip_model, self.preprocess = clip.load("ViT-B/32", device="cuda") #clip.load(config['clip_model'], device="cuda" if torch.cuda.is_available() else "cpu")
|
137 |
+
|
138 |
+
self.clip_model = self.clip_model.float()
|
139 |
+
self.mlp = MLP(config['ImageReward']['mlp_dim'])
|
140 |
+
self.vit_block = ViTBlock(self.config["ViT"]["feature_dim"], self.config["ViT"]["num_heads"], self.config["ViT"]["mlp_dim"])
|
141 |
+
|
142 |
+
if self.config.fix_base:
|
143 |
+
self.clip_model.requires_grad_(False)
|
144 |
+
|
145 |
+
for name, parms in self.clip_model.named_parameters():
|
146 |
+
if '_proj' in name:
|
147 |
+
parms.requires_grad_(False)
|
148 |
+
|
149 |
+
# fix certain ratio of layers
|
150 |
+
self.image_layer_num = 12
|
151 |
+
if self.config.fix_base > 0:
|
152 |
+
image_fix_num = "resblocks.{}".format(int(self.image_layer_num * self.config.fix_base))
|
153 |
+
for name, parms in self.clip_model.visual.named_parameters():
|
154 |
+
parms.requires_grad_(False)
|
155 |
+
if image_fix_num in name:
|
156 |
+
break
|
157 |
+
|
158 |
+
|
159 |
+
def loose_layer(self, fix_rate):
|
160 |
+
text_layer_id = [f"layer.{id}" for id in range(int(12 * fix_rate), 13)]
|
161 |
+
image_layer_id = [f"blocks.{id}" for id in range(int(24 * fix_rate), 25)]
|
162 |
+
for name, parms in self.blip.text_encoder.named_parameters():
|
163 |
+
for text_id in text_layer_id:
|
164 |
+
if text_id in name:
|
165 |
+
parms.requires_grad_(True)
|
166 |
+
for name, parms in self.blip.visual_encoder.named_parameters():
|
167 |
+
for image_id in image_layer_id:
|
168 |
+
if image_id in name:
|
169 |
+
parms.requires_grad_(True)
|
170 |
+
|
171 |
+
|
172 |
+
def forward(self, batch_data):
|
173 |
+
|
174 |
+
b_emb_inpt, b_emb_msk, w_emb_inpt, w_emb_msk = self.encode_pair(batch_data) # Nan
|
175 |
+
# forward
|
176 |
+
b_emb_feature = torch.cat((b_emb_inpt, b_emb_msk), dim=-1)
|
177 |
+
b_emb_feature = self.vit_block(b_emb_feature) # 1024
|
178 |
+
w_emb_feature = torch.cat((w_emb_inpt, w_emb_msk), dim=-1)
|
179 |
+
w_emb_feature = self.vit_block(w_emb_feature) # 1024
|
180 |
+
|
181 |
+
reward_better = self.mlp(b_emb_feature).squeeze(-1)
|
182 |
+
reward_worse = self.mlp(w_emb_feature).squeeze(-1)
|
183 |
+
reward = torch.concat((reward_better, reward_worse), dim=1)
|
184 |
+
|
185 |
+
return reward
|
186 |
+
|
187 |
+
|
188 |
+
def encode_pair(self, batch_data):
|
189 |
+
better_inpaint_embeds_bs, better_mask_rgb_embeds_bs = [], []
|
190 |
+
worse_inpaint_embeds_bs, worse_mask_rgb_embeds_bs = [], []
|
191 |
+
for bs in range(len(batch_data)):
|
192 |
+
better_inpt, better_msk = batch_data[bs]['better_inpt'], batch_data[bs]['better_msk']
|
193 |
+
better_inpt, better_msk = better_inpt.to(self.device), better_msk.to(self.device)
|
194 |
+
|
195 |
+
worse_inpt, worse_msk = batch_data[bs]['worse_inpt'], batch_data[bs]['worse_msk']
|
196 |
+
worse_inpt, worse_msk = worse_inpt.to(self.device), worse_msk.to(self.device)
|
197 |
+
# with torch.no_grad():
|
198 |
+
better_inpaint_embeds = self.clip_model.encode_image(better_inpt).to(torch.float32)
|
199 |
+
better_mask_rgb_embeds = self.clip_model.encode_image(better_msk).to(torch.float32)
|
200 |
+
worse_inpaint_embeds = self.clip_model.encode_image(worse_inpt).to(torch.float32)
|
201 |
+
worse_mask_rgb_embeds = self.clip_model.encode_image(worse_msk).to(torch.float32)
|
202 |
+
|
203 |
+
better_inpaint_embeds_bs.append(better_inpaint_embeds)
|
204 |
+
better_mask_rgb_embeds_bs.append(better_mask_rgb_embeds)
|
205 |
+
worse_inpaint_embeds_bs.append(worse_inpaint_embeds)
|
206 |
+
worse_mask_rgb_embeds_bs.append(worse_mask_rgb_embeds)
|
207 |
+
|
208 |
+
b_inpt = torch.stack(better_inpaint_embeds_bs, dim=0)
|
209 |
+
b_msk = torch.stack(better_mask_rgb_embeds_bs, dim=0)
|
210 |
+
w_inpt = torch.stack(worse_inpaint_embeds_bs, dim=0)
|
211 |
+
w_msk = torch.stack(worse_mask_rgb_embeds_bs, dim=0)
|
212 |
+
|
213 |
+
|
214 |
+
return b_inpt, b_msk, w_inpt, w_msk
|
215 |
+
|
216 |
+
|
217 |
+
def load_model(self, model, ckpt_path = None):
|
218 |
+
|
219 |
+
print('load checkpoint from %s'%ckpt_path)
|
220 |
+
checkpoint = torch.load(ckpt_path, map_location='cpu')
|
221 |
+
state_dict = checkpoint
|
222 |
+
msg = model.load_state_dict(state_dict,strict=False)
|
223 |
+
print("missing keys:", msg.missing_keys)
|
224 |
+
|
225 |
+
return model
|
226 |
+
|
227 |
+
|
228 |
+
|