Delete ddim_with_prob.py
Browse files- ddim_with_prob.py +0 -397
ddim_with_prob.py
DELETED
@@ -1,397 +0,0 @@
|
|
1 |
-
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
16 |
-
# and https://github.com/hojonathanho/diffusion
|
17 |
-
|
18 |
-
import math
|
19 |
-
from dataclasses import dataclass
|
20 |
-
from typing import List, Optional, Tuple, Union
|
21 |
-
import numpy as np
|
22 |
-
import torch
|
23 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
24 |
-
from diffusers.utils import BaseOutput
|
25 |
-
from diffusers.utils.torch_utils import randn_tensor
|
26 |
-
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
|
27 |
-
|
28 |
-
|
29 |
-
@dataclass
|
30 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
|
31 |
-
class DDIMSchedulerOutput(BaseOutput):
|
32 |
-
"""
|
33 |
-
Output class for the scheduler's step function output.
|
34 |
-
|
35 |
-
Args:
|
36 |
-
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
37 |
-
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
|
38 |
-
denoising loop.
|
39 |
-
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
40 |
-
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
|
41 |
-
`pred_original_sample` can be used to preview progress or for guidance.
|
42 |
-
"""
|
43 |
-
|
44 |
-
prev_sample: torch.FloatTensor
|
45 |
-
pred_original_sample: Optional[torch.FloatTensor] = None
|
46 |
-
log_prob: Optional[torch.FloatTensor] = None
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
|
51 |
-
"""
|
52 |
-
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
53 |
-
(1-beta) over time from t = [0,1].
|
54 |
-
|
55 |
-
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
56 |
-
to that part of the diffusion process.
|
57 |
-
|
58 |
-
|
59 |
-
Args:
|
60 |
-
num_diffusion_timesteps (`int`): the number of betas to produce.
|
61 |
-
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
62 |
-
prevent singularities.
|
63 |
-
|
64 |
-
Returns:
|
65 |
-
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
66 |
-
"""
|
67 |
-
|
68 |
-
def alpha_bar(time_step):
|
69 |
-
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
|
70 |
-
|
71 |
-
betas = []
|
72 |
-
for i in range(num_diffusion_timesteps):
|
73 |
-
t1 = i / num_diffusion_timesteps
|
74 |
-
t2 = (i + 1) / num_diffusion_timesteps
|
75 |
-
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
76 |
-
return torch.tensor(betas)
|
77 |
-
|
78 |
-
|
79 |
-
class DDIMSchedulerCustom(SchedulerMixin, ConfigMixin):
|
80 |
-
"""
|
81 |
-
Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
|
82 |
-
diffusion probabilistic models (DDPMs) with non-Markovian guidance.
|
83 |
-
|
84 |
-
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
|
85 |
-
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
|
86 |
-
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
|
87 |
-
[`~SchedulerMixin.from_pretrained`] functions.
|
88 |
-
|
89 |
-
For more details, see the original paper: https://arxiv.org/abs/2010.02502
|
90 |
-
|
91 |
-
Args:
|
92 |
-
num_train_timesteps (`int`): number of diffusion steps used to train the model.
|
93 |
-
beta_start (`float`): the starting `beta` value of inference.
|
94 |
-
beta_end (`float`): the final `beta` value.
|
95 |
-
beta_schedule (`str`):
|
96 |
-
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
97 |
-
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
98 |
-
trained_betas (`np.ndarray`, optional):
|
99 |
-
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
|
100 |
-
clip_sample (`bool`, default `True`):
|
101 |
-
option to clip predicted sample between -1 and 1 for numerical stability.
|
102 |
-
set_alpha_to_one (`bool`, default `True`):
|
103 |
-
each diffusion step uses the value of alphas product at that step and at the previous one. For the final
|
104 |
-
step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
105 |
-
otherwise it uses the value of alpha at step 0.
|
106 |
-
steps_offset (`int`, default `0`):
|
107 |
-
an offset added to the inference steps. You can use a combination of `offset=1` and
|
108 |
-
`set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
|
109 |
-
stable diffusion.
|
110 |
-
prediction_type (`str`, default `epsilon`, optional):
|
111 |
-
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
|
112 |
-
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
|
113 |
-
https://imagen.research.google/video/paper.pdf)
|
114 |
-
"""
|
115 |
-
|
116 |
-
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
117 |
-
order = 1
|
118 |
-
|
119 |
-
@register_to_config
|
120 |
-
def __init__(
|
121 |
-
self,
|
122 |
-
num_train_timesteps: int = 1000,
|
123 |
-
beta_start: float = 0.0001,
|
124 |
-
beta_end: float = 0.02,
|
125 |
-
beta_schedule: str = "linear",
|
126 |
-
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
127 |
-
clip_sample: bool = True,
|
128 |
-
set_alpha_to_one: bool = True,
|
129 |
-
steps_offset: int = 0,
|
130 |
-
prediction_type: str = "epsilon",
|
131 |
-
):
|
132 |
-
if trained_betas is not None:
|
133 |
-
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
134 |
-
elif beta_schedule == "linear":
|
135 |
-
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
136 |
-
elif beta_schedule == "scaled_linear":
|
137 |
-
# this schedule is very specific to the latent diffusion model.
|
138 |
-
self.betas = (
|
139 |
-
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
140 |
-
)
|
141 |
-
elif beta_schedule == "squaredcos_cap_v2":
|
142 |
-
# Glide cosine schedule
|
143 |
-
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
144 |
-
else:
|
145 |
-
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
146 |
-
|
147 |
-
self.alphas = 1.0 - self.betas
|
148 |
-
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
149 |
-
|
150 |
-
# At every step in ddim, we are looking into the previous alphas_cumprod
|
151 |
-
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
152 |
-
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
153 |
-
# whether we use the final alpha of the "non-previous" one.
|
154 |
-
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
155 |
-
|
156 |
-
# standard deviation of the initial noise distribution
|
157 |
-
self.init_noise_sigma = 1.0
|
158 |
-
|
159 |
-
# setable values
|
160 |
-
self.num_inference_steps = None
|
161 |
-
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
162 |
-
|
163 |
-
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
164 |
-
"""
|
165 |
-
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
166 |
-
current timestep.
|
167 |
-
|
168 |
-
Args:
|
169 |
-
sample (`torch.FloatTensor`): input sample
|
170 |
-
timestep (`int`, optional): current timestep
|
171 |
-
|
172 |
-
Returns:
|
173 |
-
`torch.FloatTensor`: scaled input sample
|
174 |
-
"""
|
175 |
-
return sample
|
176 |
-
|
177 |
-
def _get_variance(self, timestep, prev_timestep):
|
178 |
-
alpha_prod_t = self.alphas_cumprod[timestep]
|
179 |
-
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
180 |
-
beta_prod_t = 1 - alpha_prod_t
|
181 |
-
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
182 |
-
|
183 |
-
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
184 |
-
|
185 |
-
return variance
|
186 |
-
|
187 |
-
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
188 |
-
"""
|
189 |
-
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
|
190 |
-
|
191 |
-
Args:
|
192 |
-
num_inference_steps (`int`):
|
193 |
-
the number of diffusion steps used when generating samples with a pre-trained model.
|
194 |
-
"""
|
195 |
-
|
196 |
-
if num_inference_steps > self.config.num_train_timesteps:
|
197 |
-
raise ValueError(
|
198 |
-
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
199 |
-
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
200 |
-
f" maximal {self.config.num_train_timesteps} timesteps."
|
201 |
-
)
|
202 |
-
|
203 |
-
self.num_inference_steps = num_inference_steps
|
204 |
-
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
205 |
-
# creates integer timesteps by multiplying by ratio
|
206 |
-
# casting to int to avoid issues when num_inference_step is power of 3
|
207 |
-
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
|
208 |
-
self.timesteps = torch.from_numpy(timesteps).to(device)
|
209 |
-
self.timesteps += self.config.steps_offset
|
210 |
-
|
211 |
-
def step(
|
212 |
-
self,
|
213 |
-
model_output: torch.FloatTensor,
|
214 |
-
timestep: int,
|
215 |
-
sample: torch.FloatTensor,
|
216 |
-
eta: float = 0.0,
|
217 |
-
use_clipped_model_output: bool = False,
|
218 |
-
generator=None,
|
219 |
-
variance_noise: Optional[torch.FloatTensor] = None,
|
220 |
-
return_dict: bool = True,
|
221 |
-
prev_sample: Optional[torch.FloatTensor] = None,
|
222 |
-
) -> Union[DDIMSchedulerOutput, Tuple]:
|
223 |
-
"""
|
224 |
-
|
225 |
-
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
226 |
-
process from the learned model outputs (most often the predicted noise).
|
227 |
-
|
228 |
-
First, the model_output is used to calculate the prev_sample_mean. If
|
229 |
-
key is not None, some noise is added to produce prev_sample (with
|
230 |
-
variance depending on eta). If prev_sample is not None, this function
|
231 |
-
essentially just calculates the log_prob of prev_sample given
|
232 |
-
prev_sample_mean, and prev_sample is returned unmodified.
|
233 |
-
|
234 |
-
|
235 |
-
Args:
|
236 |
-
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
|
237 |
-
timestep (`int`): current discrete timestep in the diffusion chain.
|
238 |
-
sample (`torch.FloatTensor`):
|
239 |
-
current instance of sample being created by diffusion process.
|
240 |
-
eta (`float`): weight of noise for added noise in diffusion step.
|
241 |
-
use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
|
242 |
-
predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
|
243 |
-
`self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
|
244 |
-
coincide with the one provided as input and `use_clipped_model_output` will have not effect.
|
245 |
-
generator: random number generator.
|
246 |
-
variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we
|
247 |
-
can directly provide the noise for the variance itself. This is useful for methods such as
|
248 |
-
CycleDiffusion. (https://arxiv.org/abs/2210.05559)
|
249 |
-
return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
|
250 |
-
|
251 |
-
Returns:
|
252 |
-
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
|
253 |
-
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
254 |
-
returning a tuple, the first element is the sample tensor.
|
255 |
-
|
256 |
-
"""
|
257 |
-
# eta = 1.0
|
258 |
-
if self.num_inference_steps is None:
|
259 |
-
raise ValueError(
|
260 |
-
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
261 |
-
)
|
262 |
-
|
263 |
-
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
264 |
-
# Ideally, read DDIM paper in-detail understanding
|
265 |
-
|
266 |
-
# Notation (<variable name> -> <name in paper>
|
267 |
-
# - pred_noise_t -> e_theta(x_t, t)
|
268 |
-
# - pred_original_sample -> f_theta(x_t, t) or x_0
|
269 |
-
# - std_dev_t -> sigma_t
|
270 |
-
# - eta -> η
|
271 |
-
# - pred_sample_direction -> "direction pointing to x_t"
|
272 |
-
# - pred_prev_sample -> "x_t-1"
|
273 |
-
|
274 |
-
# 1. get previous step value (=t-1)
|
275 |
-
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
|
276 |
-
|
277 |
-
|
278 |
-
# 2. compute alphas, betas
|
279 |
-
alpha_prod_t = self.alphas_cumprod[timestep]
|
280 |
-
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
281 |
-
|
282 |
-
beta_prod_t = 1 - alpha_prod_t
|
283 |
-
|
284 |
-
# 3. compute predicted original sample from predicted noise also called
|
285 |
-
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
286 |
-
if self.config.prediction_type == "epsilon":
|
287 |
-
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
288 |
-
elif self.config.prediction_type == "sample":
|
289 |
-
pred_original_sample = model_output
|
290 |
-
elif self.config.prediction_type == "v_prediction":
|
291 |
-
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
292 |
-
# predict V
|
293 |
-
model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
294 |
-
else:
|
295 |
-
raise ValueError(
|
296 |
-
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
|
297 |
-
" `v_prediction`"
|
298 |
-
)
|
299 |
-
|
300 |
-
# 4. Clip "predicted x_0"
|
301 |
-
if self.config.clip_sample:
|
302 |
-
pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
|
303 |
-
|
304 |
-
|
305 |
-
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
306 |
-
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
307 |
-
variance = self._get_variance(timestep, prev_timestep)
|
308 |
-
std_dev_t = eta * variance ** (0.5)
|
309 |
-
|
310 |
-
|
311 |
-
if use_clipped_model_output:
|
312 |
-
# the model_output is always re-derived from the clipped x_0 in Glide
|
313 |
-
model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
314 |
-
|
315 |
-
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
316 |
-
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
|
317 |
-
|
318 |
-
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
319 |
-
prev_sample_mean = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
320 |
-
|
321 |
-
|
322 |
-
if prev_sample is None and eta > 0:
|
323 |
-
device = model_output.device
|
324 |
-
if variance_noise is not None and generator is not None:
|
325 |
-
raise ValueError(
|
326 |
-
"Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
|
327 |
-
" `variance_noise` stays `None`."
|
328 |
-
)
|
329 |
-
|
330 |
-
if variance_noise is None:
|
331 |
-
variance_noise = randn_tensor(
|
332 |
-
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
|
333 |
-
)
|
334 |
-
|
335 |
-
prev_sample = prev_sample_mean + std_dev_t * variance_noise
|
336 |
-
|
337 |
-
# std_dev_t = torch.clip(std_dev_t, min=1e-6)
|
338 |
-
log_prob = (
|
339 |
-
-((prev_sample - prev_sample_mean) ** 2) / (2 * (std_dev_t**2))
|
340 |
-
- math.log(std_dev_t)
|
341 |
-
- math.log(math.sqrt(2 * math.pi))
|
342 |
-
)
|
343 |
-
|
344 |
-
log_prob_mean = torch.mean(log_prob, axis=tuple(range(1, log_prob.ndim)))
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
if not return_dict:
|
349 |
-
return (prev_sample, pred_original_sample, log_prob, log_prob_mean)
|
350 |
-
|
351 |
-
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample, log_prob=log_prob_mean)
|
352 |
-
|
353 |
-
def add_noise(
|
354 |
-
self,
|
355 |
-
original_samples: torch.FloatTensor,
|
356 |
-
noise: torch.FloatTensor,
|
357 |
-
timesteps: torch.IntTensor,
|
358 |
-
) -> torch.FloatTensor:
|
359 |
-
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
360 |
-
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
|
361 |
-
timesteps = timesteps.to(original_samples.device)
|
362 |
-
|
363 |
-
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
|
364 |
-
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
365 |
-
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
366 |
-
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
367 |
-
|
368 |
-
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
|
369 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
370 |
-
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
371 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
372 |
-
|
373 |
-
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
374 |
-
return noisy_samples
|
375 |
-
|
376 |
-
def get_velocity(
|
377 |
-
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
|
378 |
-
) -> torch.FloatTensor:
|
379 |
-
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
380 |
-
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
|
381 |
-
timesteps = timesteps.to(sample.device)
|
382 |
-
|
383 |
-
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
|
384 |
-
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
385 |
-
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
386 |
-
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
387 |
-
|
388 |
-
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
|
389 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
390 |
-
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
391 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
392 |
-
|
393 |
-
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
394 |
-
return velocity
|
395 |
-
|
396 |
-
def __len__(self):
|
397 |
-
return self.config.num_train_timesteps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|