kasperchen
commited on
Commit
•
1c7d5fa
1
Parent(s):
5a55e3e
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1693882478.ml1-H170-Gaming-3 +0 -0
- .summary/0/events.out.tfevents.1693882492.ml1-H170-Gaming-3 +3 -0
- .summary/0/events.out.tfevents.1693882615.ml1-H170-Gaming-3 +0 -0
- .summary/0/events.out.tfevents.1693882641.ml1-H170-Gaming-3 +3 -0
- .summary/0/events.out.tfevents.1693882709.ml1-H170-Gaming-3 +3 -0
- README.md +56 -0
- checkpoint_p0/best_000000978_4005888_reward_26.360.pth +3 -0
- checkpoint_p0/checkpoint_000000719_2945024.pth +3 -0
- checkpoint_p0/checkpoint_000000978_4005888.pth +3 -0
- config.json +142 -0
- replay.mp4 +3 -0
- sf_log.txt +484 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1693882478.ml1-H170-Gaming-3
ADDED
File without changes
|
.summary/0/events.out.tfevents.1693882492.ml1-H170-Gaming-3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf41d75228b836c81d814162aed75cf70908eefa6b2ff0ab8b47180c194b8577
|
3 |
+
size 40
|
.summary/0/events.out.tfevents.1693882615.ml1-H170-Gaming-3
ADDED
File without changes
|
.summary/0/events.out.tfevents.1693882641.ml1-H170-Gaming-3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:931c7d35b2b064b2aa58a96f503a838460b0b70c6d86b68aac3e2fdc341dc752
|
3 |
+
size 40
|
.summary/0/events.out.tfevents.1693882709.ml1-H170-Gaming-3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c9140bf6c8bc850b3d97b5f66ef46968b5695b8aa6e1f2f06357d1b57fcb4ef
|
3 |
+
size 294633
|
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: doom_health_gathering_supreme
|
15 |
+
type: doom_health_gathering_supreme
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 10.39 +/- 4.27
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r kasperchen/rl_course_vizdoom_health_gathering_supreme
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
checkpoint_p0/best_000000978_4005888_reward_26.360.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ee581fc2a2b7629db03d43d338cca773c4688715c8bbc1025085fcb34d3bb37
|
3 |
+
size 34928614
|
checkpoint_p0/checkpoint_000000719_2945024.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fccb8c042971fd54e469346b61212146e004c4d9f4a36384a2ee8dcbdefc7455
|
3 |
+
size 34929028
|
checkpoint_p0/checkpoint_000000978_4005888.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f4a08bb8e234d376bb2556f233ca246291584db62d5b9b87073668444d472d7
|
3 |
+
size 34929028
|
config.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/media/ml1/data/nogletrading/ppo_vizdoom/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 4,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"lr_adaptive_min": 1e-06,
|
50 |
+
"lr_adaptive_max": 0.01,
|
51 |
+
"obs_subtract_mean": 0.0,
|
52 |
+
"obs_scale": 255.0,
|
53 |
+
"normalize_input": true,
|
54 |
+
"normalize_input_keys": null,
|
55 |
+
"decorrelate_experience_max_seconds": 0,
|
56 |
+
"decorrelate_envs_on_one_worker": true,
|
57 |
+
"actor_worker_gpus": [],
|
58 |
+
"set_workers_cpu_affinity": true,
|
59 |
+
"force_envs_single_thread": false,
|
60 |
+
"default_niceness": 0,
|
61 |
+
"log_to_file": true,
|
62 |
+
"experiment_summaries_interval": 10,
|
63 |
+
"flush_summaries_interval": 30,
|
64 |
+
"stats_avg": 100,
|
65 |
+
"summaries_use_frameskip": true,
|
66 |
+
"heartbeat_interval": 20,
|
67 |
+
"heartbeat_reporting_interval": 600,
|
68 |
+
"train_for_env_steps": 4000000,
|
69 |
+
"train_for_seconds": 10000000000,
|
70 |
+
"save_every_sec": 120,
|
71 |
+
"keep_checkpoints": 2,
|
72 |
+
"load_checkpoint_kind": "latest",
|
73 |
+
"save_milestones_sec": -1,
|
74 |
+
"save_best_every_sec": 5,
|
75 |
+
"save_best_metric": "reward",
|
76 |
+
"save_best_after": 100000,
|
77 |
+
"benchmark": false,
|
78 |
+
"encoder_mlp_layers": [
|
79 |
+
512,
|
80 |
+
512
|
81 |
+
],
|
82 |
+
"encoder_conv_architecture": "convnet_simple",
|
83 |
+
"encoder_conv_mlp_layers": [
|
84 |
+
512
|
85 |
+
],
|
86 |
+
"use_rnn": true,
|
87 |
+
"rnn_size": 512,
|
88 |
+
"rnn_type": "gru",
|
89 |
+
"rnn_num_layers": 1,
|
90 |
+
"decoder_mlp_layers": [],
|
91 |
+
"nonlinearity": "elu",
|
92 |
+
"policy_initialization": "orthogonal",
|
93 |
+
"policy_init_gain": 1.0,
|
94 |
+
"actor_critic_share_weights": true,
|
95 |
+
"adaptive_stddev": true,
|
96 |
+
"continuous_tanh_scale": 0.0,
|
97 |
+
"initial_stddev": 1.0,
|
98 |
+
"use_env_info_cache": false,
|
99 |
+
"env_gpu_actions": false,
|
100 |
+
"env_gpu_observations": true,
|
101 |
+
"env_frameskip": 4,
|
102 |
+
"env_framestack": 1,
|
103 |
+
"pixel_format": "CHW",
|
104 |
+
"use_record_episode_statistics": false,
|
105 |
+
"with_wandb": false,
|
106 |
+
"wandb_user": null,
|
107 |
+
"wandb_project": "sample_factory",
|
108 |
+
"wandb_group": null,
|
109 |
+
"wandb_job_type": "SF",
|
110 |
+
"wandb_tags": [],
|
111 |
+
"with_pbt": false,
|
112 |
+
"pbt_mix_policies_in_one_env": true,
|
113 |
+
"pbt_period_env_steps": 5000000,
|
114 |
+
"pbt_start_mutation": 20000000,
|
115 |
+
"pbt_replace_fraction": 0.3,
|
116 |
+
"pbt_mutation_rate": 0.15,
|
117 |
+
"pbt_replace_reward_gap": 0.1,
|
118 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
119 |
+
"pbt_optimize_gamma": false,
|
120 |
+
"pbt_target_objective": "true_objective",
|
121 |
+
"pbt_perturb_min": 1.1,
|
122 |
+
"pbt_perturb_max": 1.5,
|
123 |
+
"num_agents": -1,
|
124 |
+
"num_humans": 0,
|
125 |
+
"num_bots": -1,
|
126 |
+
"start_bot_difficulty": null,
|
127 |
+
"timelimit": null,
|
128 |
+
"res_w": 128,
|
129 |
+
"res_h": 72,
|
130 |
+
"wide_aspect_ratio": false,
|
131 |
+
"eval_env_frameskip": 1,
|
132 |
+
"fps": 35,
|
133 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
134 |
+
"cli_args": {
|
135 |
+
"env": "doom_health_gathering_supreme",
|
136 |
+
"num_workers": 8,
|
137 |
+
"num_envs_per_worker": 4,
|
138 |
+
"train_for_env_steps": 4000000
|
139 |
+
},
|
140 |
+
"git_hash": "unknown",
|
141 |
+
"git_repo_name": "not a git repository"
|
142 |
+
}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25efaba2867dec06fe143874fdde309a54f4e5b93a60f252a66593ea58b1759f
|
3 |
+
size 20188172
|
sf_log.txt
ADDED
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2023-09-05 10:58:35,050][272918] Saving configuration to /media/ml1/data/nogletrading/ppo_vizdoom/train_dir/default_experiment/config.json...
|
2 |
+
[2023-09-05 10:58:35,052][272918] Rollout worker 0 uses device cpu
|
3 |
+
[2023-09-05 10:58:35,052][272918] Rollout worker 1 uses device cpu
|
4 |
+
[2023-09-05 10:58:35,052][272918] Rollout worker 2 uses device cpu
|
5 |
+
[2023-09-05 10:58:35,052][272918] Rollout worker 3 uses device cpu
|
6 |
+
[2023-09-05 10:58:35,053][272918] Rollout worker 4 uses device cpu
|
7 |
+
[2023-09-05 10:58:35,053][272918] Rollout worker 5 uses device cpu
|
8 |
+
[2023-09-05 10:58:35,053][272918] Rollout worker 6 uses device cpu
|
9 |
+
[2023-09-05 10:58:35,054][272918] Rollout worker 7 uses device cpu
|
10 |
+
[2023-09-05 10:58:35,130][272918] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
11 |
+
[2023-09-05 10:58:35,130][272918] InferenceWorker_p0-w0: min num requests: 2
|
12 |
+
[2023-09-05 10:58:35,163][272918] Starting all processes...
|
13 |
+
[2023-09-05 10:58:35,163][272918] Starting process learner_proc0
|
14 |
+
[2023-09-05 10:58:37,092][272918] Starting all processes...
|
15 |
+
[2023-09-05 10:58:37,106][272918] Starting process inference_proc0-0
|
16 |
+
[2023-09-05 10:58:37,107][272918] Starting process rollout_proc0
|
17 |
+
[2023-09-05 10:58:37,108][273075] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
18 |
+
[2023-09-05 10:58:37,109][273075] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
19 |
+
[2023-09-05 10:58:37,107][272918] Starting process rollout_proc1
|
20 |
+
[2023-09-05 10:58:37,108][272918] Starting process rollout_proc2
|
21 |
+
[2023-09-05 10:58:37,111][272918] Starting process rollout_proc3
|
22 |
+
[2023-09-05 10:58:37,118][273075] Num visible devices: 1
|
23 |
+
[2023-09-05 10:58:37,111][272918] Starting process rollout_proc4
|
24 |
+
[2023-09-05 10:58:37,112][272918] Starting process rollout_proc5
|
25 |
+
[2023-09-05 10:58:37,114][272918] Starting process rollout_proc6
|
26 |
+
[2023-09-05 10:58:37,114][272918] Starting process rollout_proc7
|
27 |
+
[2023-09-05 10:58:37,198][273075] Starting seed is not provided
|
28 |
+
[2023-09-05 10:58:37,199][273075] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
29 |
+
[2023-09-05 10:58:37,200][273075] Initializing actor-critic model on device cuda:0
|
30 |
+
[2023-09-05 10:58:37,201][273075] RunningMeanStd input shape: (3, 72, 128)
|
31 |
+
[2023-09-05 10:58:37,204][273075] RunningMeanStd input shape: (1,)
|
32 |
+
[2023-09-05 10:58:37,245][273075] ConvEncoder: input_channels=3
|
33 |
+
[2023-09-05 10:58:37,545][273075] Conv encoder output size: 512
|
34 |
+
[2023-09-05 10:58:37,546][273075] Policy head output size: 512
|
35 |
+
[2023-09-05 10:58:37,568][273075] Created Actor Critic model with architecture:
|
36 |
+
[2023-09-05 10:58:37,568][273075] ActorCriticSharedWeights(
|
37 |
+
(obs_normalizer): ObservationNormalizer(
|
38 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
39 |
+
(running_mean_std): ModuleDict(
|
40 |
+
(obs): RunningMeanStdInPlace()
|
41 |
+
)
|
42 |
+
)
|
43 |
+
)
|
44 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
45 |
+
(encoder): VizdoomEncoder(
|
46 |
+
(basic_encoder): ConvEncoder(
|
47 |
+
(enc): RecursiveScriptModule(
|
48 |
+
original_name=ConvEncoderImpl
|
49 |
+
(conv_head): RecursiveScriptModule(
|
50 |
+
original_name=Sequential
|
51 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
52 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
53 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
54 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
55 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
56 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
57 |
+
)
|
58 |
+
(mlp_layers): RecursiveScriptModule(
|
59 |
+
original_name=Sequential
|
60 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
61 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
62 |
+
)
|
63 |
+
)
|
64 |
+
)
|
65 |
+
)
|
66 |
+
(core): ModelCoreRNN(
|
67 |
+
(core): GRU(512, 512)
|
68 |
+
)
|
69 |
+
(decoder): MlpDecoder(
|
70 |
+
(mlp): Identity()
|
71 |
+
)
|
72 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
73 |
+
(action_parameterization): ActionParameterizationDefault(
|
74 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
[2023-09-05 10:58:40,269][273148] Worker 2 uses CPU cores [2]
|
78 |
+
[2023-09-05 10:58:40,288][273075] Using optimizer <class 'torch.optim.adam.Adam'>
|
79 |
+
[2023-09-05 10:58:40,291][273075] No checkpoints found
|
80 |
+
[2023-09-05 10:58:40,292][273075] Did not load from checkpoint, starting from scratch!
|
81 |
+
[2023-09-05 10:58:40,293][273075] Initialized policy 0 weights for model version 0
|
82 |
+
[2023-09-05 10:58:40,301][273075] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
83 |
+
[2023-09-05 10:58:40,325][273075] LearnerWorker_p0 finished initialization!
|
84 |
+
[2023-09-05 10:58:40,825][273157] Worker 4 uses CPU cores [4]
|
85 |
+
[2023-09-05 10:58:41,270][273146] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
86 |
+
[2023-09-05 10:58:41,271][273146] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
87 |
+
[2023-09-05 10:58:41,280][273146] Num visible devices: 1
|
88 |
+
[2023-09-05 10:58:41,504][273146] RunningMeanStd input shape: (3, 72, 128)
|
89 |
+
[2023-09-05 10:58:41,507][273146] RunningMeanStd input shape: (1,)
|
90 |
+
[2023-09-05 10:58:41,573][273146] ConvEncoder: input_channels=3
|
91 |
+
[2023-09-05 10:58:41,784][273146] Conv encoder output size: 512
|
92 |
+
[2023-09-05 10:58:41,786][273146] Policy head output size: 512
|
93 |
+
[2023-09-05 10:58:41,847][273147] Worker 0 uses CPU cores [0]
|
94 |
+
[2023-09-05 10:58:42,376][273149] Worker 1 uses CPU cores [1]
|
95 |
+
[2023-09-05 10:58:42,765][273165] Worker 6 uses CPU cores [6]
|
96 |
+
[2023-09-05 10:58:43,101][273160] Worker 7 uses CPU cores [7]
|
97 |
+
[2023-09-05 10:58:43,329][273162] Worker 3 uses CPU cores [3]
|
98 |
+
[2023-09-05 10:58:43,474][272918] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
99 |
+
[2023-09-05 10:58:43,484][273164] Worker 5 uses CPU cores [5]
|
100 |
+
[2023-09-05 10:58:44,287][272918] Inference worker 0-0 is ready!
|
101 |
+
[2023-09-05 10:58:44,287][272918] All inference workers are ready! Signal rollout workers to start!
|
102 |
+
[2023-09-05 10:58:44,335][272918] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
103 |
+
[2023-09-05 10:58:44,366][273160] Doom resolution: 160x120, resize resolution: (128, 72)
|
104 |
+
[2023-09-05 10:58:44,367][273148] Doom resolution: 160x120, resize resolution: (128, 72)
|
105 |
+
[2023-09-05 10:58:44,370][273147] Doom resolution: 160x120, resize resolution: (128, 72)
|
106 |
+
[2023-09-05 10:58:44,376][273149] Doom resolution: 160x120, resize resolution: (128, 72)
|
107 |
+
[2023-09-05 10:58:44,386][273165] Doom resolution: 160x120, resize resolution: (128, 72)
|
108 |
+
[2023-09-05 10:58:44,389][273162] Doom resolution: 160x120, resize resolution: (128, 72)
|
109 |
+
[2023-09-05 10:58:44,392][273164] Doom resolution: 160x120, resize resolution: (128, 72)
|
110 |
+
[2023-09-05 10:58:44,409][273157] Doom resolution: 160x120, resize resolution: (128, 72)
|
111 |
+
[2023-09-05 10:58:44,936][273148] Decorrelating experience for 0 frames...
|
112 |
+
[2023-09-05 10:58:44,936][273147] Decorrelating experience for 0 frames...
|
113 |
+
[2023-09-05 10:58:44,939][273164] Decorrelating experience for 0 frames...
|
114 |
+
[2023-09-05 10:58:44,939][273160] Decorrelating experience for 0 frames...
|
115 |
+
[2023-09-05 10:58:44,941][273149] Decorrelating experience for 0 frames...
|
116 |
+
[2023-09-05 10:58:44,941][273162] Decorrelating experience for 0 frames...
|
117 |
+
[2023-09-05 10:58:45,312][273162] Decorrelating experience for 32 frames...
|
118 |
+
[2023-09-05 10:58:45,313][273147] Decorrelating experience for 32 frames...
|
119 |
+
[2023-09-05 10:58:45,314][273148] Decorrelating experience for 32 frames...
|
120 |
+
[2023-09-05 10:58:45,320][273164] Decorrelating experience for 32 frames...
|
121 |
+
[2023-09-05 10:58:45,325][273149] Decorrelating experience for 32 frames...
|
122 |
+
[2023-09-05 10:58:45,375][273165] Decorrelating experience for 0 frames...
|
123 |
+
[2023-09-05 10:58:45,388][273157] Decorrelating experience for 0 frames...
|
124 |
+
[2023-09-05 10:58:45,644][273160] Decorrelating experience for 32 frames...
|
125 |
+
[2023-09-05 10:58:45,731][273147] Decorrelating experience for 64 frames...
|
126 |
+
[2023-09-05 10:58:45,745][273164] Decorrelating experience for 64 frames...
|
127 |
+
[2023-09-05 10:58:45,754][273165] Decorrelating experience for 32 frames...
|
128 |
+
[2023-09-05 10:58:45,838][273148] Decorrelating experience for 64 frames...
|
129 |
+
[2023-09-05 10:58:46,055][273147] Decorrelating experience for 96 frames...
|
130 |
+
[2023-09-05 10:58:46,072][273160] Decorrelating experience for 64 frames...
|
131 |
+
[2023-09-05 10:58:46,156][273162] Decorrelating experience for 64 frames...
|
132 |
+
[2023-09-05 10:58:46,164][273149] Decorrelating experience for 64 frames...
|
133 |
+
[2023-09-05 10:58:46,167][273164] Decorrelating experience for 96 frames...
|
134 |
+
[2023-09-05 10:58:46,202][273165] Decorrelating experience for 64 frames...
|
135 |
+
[2023-09-05 10:58:46,485][273160] Decorrelating experience for 96 frames...
|
136 |
+
[2023-09-05 10:58:46,537][273148] Decorrelating experience for 96 frames...
|
137 |
+
[2023-09-05 10:58:46,585][273157] Decorrelating experience for 32 frames...
|
138 |
+
[2023-09-05 10:58:46,609][273149] Decorrelating experience for 96 frames...
|
139 |
+
[2023-09-05 10:58:46,636][273162] Decorrelating experience for 96 frames...
|
140 |
+
[2023-09-05 10:58:46,821][273165] Decorrelating experience for 96 frames...
|
141 |
+
[2023-09-05 10:58:47,141][273157] Decorrelating experience for 64 frames...
|
142 |
+
[2023-09-05 10:58:47,523][273157] Decorrelating experience for 96 frames...
|
143 |
+
[2023-09-05 10:58:47,915][273075] Signal inference workers to stop experience collection...
|
144 |
+
[2023-09-05 10:58:47,920][273146] InferenceWorker_p0-w0: stopping experience collection
|
145 |
+
[2023-09-05 10:58:48,900][273075] Signal inference workers to resume experience collection...
|
146 |
+
[2023-09-05 10:58:48,901][273146] InferenceWorker_p0-w0: resuming experience collection
|
147 |
+
[2023-09-05 10:58:49,335][272918] Fps is (10 sec: 698.8, 60 sec: 698.8, 300 sec: 698.8). Total num frames: 4096. Throughput: 0: 174.0. Samples: 1020. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
|
148 |
+
[2023-09-05 10:58:49,335][272918] Avg episode reward: [(0, '2.753')]
|
149 |
+
[2023-09-05 10:58:51,929][273146] Updated weights for policy 0, policy_version 10 (0.0297)
|
150 |
+
[2023-09-05 10:58:54,335][272918] Fps is (10 sec: 6963.3, 60 sec: 6411.3, 300 sec: 6411.3). Total num frames: 69632. Throughput: 0: 1441.0. Samples: 15650. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
151 |
+
[2023-09-05 10:58:54,335][272918] Avg episode reward: [(0, '4.479')]
|
152 |
+
[2023-09-05 10:58:54,955][273146] Updated weights for policy 0, policy_version 20 (0.0021)
|
153 |
+
[2023-09-05 10:58:55,121][272918] Heartbeat connected on Batcher_0
|
154 |
+
[2023-09-05 10:58:55,125][272918] Heartbeat connected on LearnerWorker_p0
|
155 |
+
[2023-09-05 10:58:55,136][272918] Heartbeat connected on RolloutWorker_w0
|
156 |
+
[2023-09-05 10:58:55,137][272918] Heartbeat connected on InferenceWorker_p0-w0
|
157 |
+
[2023-09-05 10:58:55,140][272918] Heartbeat connected on RolloutWorker_w1
|
158 |
+
[2023-09-05 10:58:55,142][272918] Heartbeat connected on RolloutWorker_w2
|
159 |
+
[2023-09-05 10:58:55,149][272918] Heartbeat connected on RolloutWorker_w3
|
160 |
+
[2023-09-05 10:58:55,156][272918] Heartbeat connected on RolloutWorker_w5
|
161 |
+
[2023-09-05 10:58:55,157][272918] Heartbeat connected on RolloutWorker_w6
|
162 |
+
[2023-09-05 10:58:55,169][272918] Heartbeat connected on RolloutWorker_w7
|
163 |
+
[2023-09-05 10:58:55,177][272918] Heartbeat connected on RolloutWorker_w4
|
164 |
+
[2023-09-05 10:58:57,912][273146] Updated weights for policy 0, policy_version 30 (0.0023)
|
165 |
+
[2023-09-05 10:58:59,335][272918] Fps is (10 sec: 13516.9, 60 sec: 8780.3, 300 sec: 8780.3). Total num frames: 139264. Throughput: 0: 2262.8. Samples: 35890. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
166 |
+
[2023-09-05 10:58:59,335][272918] Avg episode reward: [(0, '4.458')]
|
167 |
+
[2023-09-05 10:58:59,341][273075] Saving new best policy, reward=4.458!
|
168 |
+
[2023-09-05 10:59:01,040][273146] Updated weights for policy 0, policy_version 40 (0.0024)
|
169 |
+
[2023-09-05 10:59:04,120][273146] Updated weights for policy 0, policy_version 50 (0.0023)
|
170 |
+
[2023-09-05 10:59:04,334][272918] Fps is (10 sec: 13516.9, 60 sec: 9817.5, 300 sec: 9817.5). Total num frames: 204800. Throughput: 0: 2193.2. Samples: 45752. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
171 |
+
[2023-09-05 10:59:04,335][272918] Avg episode reward: [(0, '4.259')]
|
172 |
+
[2023-09-05 10:59:07,182][273146] Updated weights for policy 0, policy_version 60 (0.0022)
|
173 |
+
[2023-09-05 10:59:09,335][272918] Fps is (10 sec: 13516.9, 60 sec: 10611.8, 300 sec: 10611.8). Total num frames: 274432. Throughput: 0: 2555.9. Samples: 66098. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
174 |
+
[2023-09-05 10:59:09,335][272918] Avg episode reward: [(0, '4.337')]
|
175 |
+
[2023-09-05 10:59:10,137][273146] Updated weights for policy 0, policy_version 70 (0.0026)
|
176 |
+
[2023-09-05 10:59:13,193][273146] Updated weights for policy 0, policy_version 80 (0.0021)
|
177 |
+
[2023-09-05 10:59:14,335][272918] Fps is (10 sec: 13516.7, 60 sec: 11016.2, 300 sec: 11016.2). Total num frames: 339968. Throughput: 0: 2790.7. Samples: 86124. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
178 |
+
[2023-09-05 10:59:14,335][272918] Avg episode reward: [(0, '4.386')]
|
179 |
+
[2023-09-05 10:59:16,324][273146] Updated weights for policy 0, policy_version 90 (0.0021)
|
180 |
+
[2023-09-05 10:59:19,335][272918] Fps is (10 sec: 13107.2, 60 sec: 11307.7, 300 sec: 11307.7). Total num frames: 405504. Throughput: 0: 2681.4. Samples: 96156. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
181 |
+
[2023-09-05 10:59:19,335][272918] Avg episode reward: [(0, '4.795')]
|
182 |
+
[2023-09-05 10:59:19,341][273075] Saving new best policy, reward=4.795!
|
183 |
+
[2023-09-05 10:59:19,499][273146] Updated weights for policy 0, policy_version 100 (0.0019)
|
184 |
+
[2023-09-05 10:59:22,787][273146] Updated weights for policy 0, policy_version 110 (0.0022)
|
185 |
+
[2023-09-05 10:59:24,335][272918] Fps is (10 sec: 12697.4, 60 sec: 11427.6, 300 sec: 11427.6). Total num frames: 466944. Throughput: 0: 2810.7. Samples: 114848. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
186 |
+
[2023-09-05 10:59:24,337][272918] Avg episode reward: [(0, '4.540')]
|
187 |
+
[2023-09-05 10:59:26,017][273146] Updated weights for policy 0, policy_version 120 (0.0023)
|
188 |
+
[2023-09-05 10:59:29,065][273146] Updated weights for policy 0, policy_version 130 (0.0021)
|
189 |
+
[2023-09-05 10:59:29,335][272918] Fps is (10 sec: 12697.5, 60 sec: 11610.7, 300 sec: 11610.7). Total num frames: 532480. Throughput: 0: 2983.6. Samples: 134262. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
190 |
+
[2023-09-05 10:59:29,336][272918] Avg episode reward: [(0, '4.593')]
|
191 |
+
[2023-09-05 10:59:32,211][273146] Updated weights for policy 0, policy_version 140 (0.0023)
|
192 |
+
[2023-09-05 10:59:34,335][272918] Fps is (10 sec: 13107.4, 60 sec: 11757.9, 300 sec: 11757.9). Total num frames: 598016. Throughput: 0: 3181.7. Samples: 144196. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
193 |
+
[2023-09-05 10:59:34,335][272918] Avg episode reward: [(0, '4.554')]
|
194 |
+
[2023-09-05 10:59:35,265][273146] Updated weights for policy 0, policy_version 150 (0.0025)
|
195 |
+
[2023-09-05 10:59:38,077][273146] Updated weights for policy 0, policy_version 160 (0.0022)
|
196 |
+
[2023-09-05 10:59:39,335][272918] Fps is (10 sec: 13516.9, 60 sec: 11952.0, 300 sec: 11952.0). Total num frames: 667648. Throughput: 0: 3317.8. Samples: 164952. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
197 |
+
[2023-09-05 10:59:39,335][272918] Avg episode reward: [(0, '4.551')]
|
198 |
+
[2023-09-05 10:59:41,172][273146] Updated weights for policy 0, policy_version 170 (0.0023)
|
199 |
+
[2023-09-05 10:59:44,159][273146] Updated weights for policy 0, policy_version 180 (0.0022)
|
200 |
+
[2023-09-05 10:59:44,334][272918] Fps is (10 sec: 13926.5, 60 sec: 12288.1, 300 sec: 12114.2). Total num frames: 737280. Throughput: 0: 3316.6. Samples: 185138. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
201 |
+
[2023-09-05 10:59:44,335][272918] Avg episode reward: [(0, '5.000')]
|
202 |
+
[2023-09-05 10:59:44,335][273075] Saving new best policy, reward=5.000!
|
203 |
+
[2023-09-05 10:59:47,218][273146] Updated weights for policy 0, policy_version 190 (0.0022)
|
204 |
+
[2023-09-05 10:59:49,335][272918] Fps is (10 sec: 13516.8, 60 sec: 13312.0, 300 sec: 12189.6). Total num frames: 802816. Throughput: 0: 3323.1. Samples: 195294. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
205 |
+
[2023-09-05 10:59:49,335][272918] Avg episode reward: [(0, '5.285')]
|
206 |
+
[2023-09-05 10:59:49,365][273075] Saving new best policy, reward=5.285!
|
207 |
+
[2023-09-05 10:59:50,372][273146] Updated weights for policy 0, policy_version 200 (0.0024)
|
208 |
+
[2023-09-05 10:59:53,644][273146] Updated weights for policy 0, policy_version 210 (0.0020)
|
209 |
+
[2023-09-05 10:59:54,335][272918] Fps is (10 sec: 13107.1, 60 sec: 13312.0, 300 sec: 12254.3). Total num frames: 868352. Throughput: 0: 3302.3. Samples: 214700. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
210 |
+
[2023-09-05 10:59:54,335][272918] Avg episode reward: [(0, '4.984')]
|
211 |
+
[2023-09-05 10:59:56,640][273146] Updated weights for policy 0, policy_version 220 (0.0021)
|
212 |
+
[2023-09-05 10:59:59,335][272918] Fps is (10 sec: 13107.2, 60 sec: 13243.7, 300 sec: 12310.5). Total num frames: 933888. Throughput: 0: 3306.0. Samples: 234894. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
213 |
+
[2023-09-05 10:59:59,335][272918] Avg episode reward: [(0, '5.508')]
|
214 |
+
[2023-09-05 10:59:59,343][273075] Saving new best policy, reward=5.508!
|
215 |
+
[2023-09-05 10:59:59,720][273146] Updated weights for policy 0, policy_version 230 (0.0024)
|
216 |
+
[2023-09-05 11:00:02,687][273146] Updated weights for policy 0, policy_version 240 (0.0023)
|
217 |
+
[2023-09-05 11:00:04,334][272918] Fps is (10 sec: 13107.3, 60 sec: 13243.7, 300 sec: 12359.8). Total num frames: 999424. Throughput: 0: 3307.4. Samples: 244988. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
218 |
+
[2023-09-05 11:00:04,335][272918] Avg episode reward: [(0, '5.247')]
|
219 |
+
[2023-09-05 11:00:05,979][273146] Updated weights for policy 0, policy_version 250 (0.0019)
|
220 |
+
[2023-09-05 11:00:08,952][273146] Updated weights for policy 0, policy_version 260 (0.0020)
|
221 |
+
[2023-09-05 11:00:09,335][272918] Fps is (10 sec: 13516.8, 60 sec: 13243.7, 300 sec: 12451.0). Total num frames: 1069056. Throughput: 0: 3330.0. Samples: 264696. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
222 |
+
[2023-09-05 11:00:09,335][272918] Avg episode reward: [(0, '5.880')]
|
223 |
+
[2023-09-05 11:00:09,341][273075] Saving new best policy, reward=5.880!
|
224 |
+
[2023-09-05 11:00:12,025][273146] Updated weights for policy 0, policy_version 270 (0.0028)
|
225 |
+
[2023-09-05 11:00:14,335][272918] Fps is (10 sec: 13516.7, 60 sec: 13243.7, 300 sec: 12487.1). Total num frames: 1134592. Throughput: 0: 3347.6. Samples: 284902. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
226 |
+
[2023-09-05 11:00:14,335][272918] Avg episode reward: [(0, '6.638')]
|
227 |
+
[2023-09-05 11:00:14,336][273075] Saving new best policy, reward=6.638!
|
228 |
+
[2023-09-05 11:00:15,077][273146] Updated weights for policy 0, policy_version 280 (0.0022)
|
229 |
+
[2023-09-05 11:00:18,087][273146] Updated weights for policy 0, policy_version 290 (0.0019)
|
230 |
+
[2023-09-05 11:00:19,335][272918] Fps is (10 sec: 13106.8, 60 sec: 13243.7, 300 sec: 12519.4). Total num frames: 1200128. Throughput: 0: 3351.6. Samples: 295020. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
231 |
+
[2023-09-05 11:00:19,335][272918] Avg episode reward: [(0, '6.295')]
|
232 |
+
[2023-09-05 11:00:21,249][273146] Updated weights for policy 0, policy_version 300 (0.0024)
|
233 |
+
[2023-09-05 11:00:24,280][273146] Updated weights for policy 0, policy_version 310 (0.0026)
|
234 |
+
[2023-09-05 11:00:24,335][272918] Fps is (10 sec: 13516.8, 60 sec: 13380.3, 300 sec: 12589.2). Total num frames: 1269760. Throughput: 0: 3333.8. Samples: 314972. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
235 |
+
[2023-09-05 11:00:24,335][272918] Avg episode reward: [(0, '6.793')]
|
236 |
+
[2023-09-05 11:00:24,336][273075] Saving new best policy, reward=6.793!
|
237 |
+
[2023-09-05 11:00:27,263][273146] Updated weights for policy 0, policy_version 320 (0.0021)
|
238 |
+
[2023-09-05 11:00:29,335][272918] Fps is (10 sec: 13517.1, 60 sec: 13380.3, 300 sec: 12613.7). Total num frames: 1335296. Throughput: 0: 3336.7. Samples: 335288. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
239 |
+
[2023-09-05 11:00:29,335][272918] Avg episode reward: [(0, '7.181')]
|
240 |
+
[2023-09-05 11:00:29,354][273075] Saving /media/ml1/data/nogletrading/ppo_vizdoom/train_dir/default_experiment/checkpoint_p0/checkpoint_000000327_1339392.pth...
|
241 |
+
[2023-09-05 11:00:29,425][273075] Saving new best policy, reward=7.181!
|
242 |
+
[2023-09-05 11:00:30,346][273146] Updated weights for policy 0, policy_version 330 (0.0024)
|
243 |
+
[2023-09-05 11:00:33,428][273146] Updated weights for policy 0, policy_version 340 (0.0021)
|
244 |
+
[2023-09-05 11:00:34,334][272918] Fps is (10 sec: 13107.3, 60 sec: 13380.3, 300 sec: 12636.0). Total num frames: 1400832. Throughput: 0: 3333.3. Samples: 345290. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
245 |
+
[2023-09-05 11:00:34,335][272918] Avg episode reward: [(0, '8.376')]
|
246 |
+
[2023-09-05 11:00:34,355][273075] Saving new best policy, reward=8.376!
|
247 |
+
[2023-09-05 11:00:36,545][273146] Updated weights for policy 0, policy_version 350 (0.0026)
|
248 |
+
[2023-09-05 11:00:39,335][272918] Fps is (10 sec: 13516.7, 60 sec: 13380.2, 300 sec: 12691.6). Total num frames: 1470464. Throughput: 0: 3344.1. Samples: 365184. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
249 |
+
[2023-09-05 11:00:39,335][272918] Avg episode reward: [(0, '8.591')]
|
250 |
+
[2023-09-05 11:00:39,342][273075] Saving new best policy, reward=8.591!
|
251 |
+
[2023-09-05 11:00:39,554][273146] Updated weights for policy 0, policy_version 360 (0.0023)
|
252 |
+
[2023-09-05 11:00:42,541][273146] Updated weights for policy 0, policy_version 370 (0.0022)
|
253 |
+
[2023-09-05 11:00:44,335][272918] Fps is (10 sec: 13516.6, 60 sec: 13312.0, 300 sec: 12708.8). Total num frames: 1536000. Throughput: 0: 3345.4. Samples: 385438. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
254 |
+
[2023-09-05 11:00:44,335][272918] Avg episode reward: [(0, '9.990')]
|
255 |
+
[2023-09-05 11:00:44,336][273075] Saving new best policy, reward=9.990!
|
256 |
+
[2023-09-05 11:00:45,608][273146] Updated weights for policy 0, policy_version 380 (0.0025)
|
257 |
+
[2023-09-05 11:00:48,766][273146] Updated weights for policy 0, policy_version 390 (0.0020)
|
258 |
+
[2023-09-05 11:00:49,335][272918] Fps is (10 sec: 13107.3, 60 sec: 13312.0, 300 sec: 12724.6). Total num frames: 1601536. Throughput: 0: 3341.8. Samples: 395368. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
259 |
+
[2023-09-05 11:00:49,335][272918] Avg episode reward: [(0, '11.946')]
|
260 |
+
[2023-09-05 11:00:49,340][273075] Saving new best policy, reward=11.946!
|
261 |
+
[2023-09-05 11:00:51,861][273146] Updated weights for policy 0, policy_version 400 (0.0020)
|
262 |
+
[2023-09-05 11:00:54,335][272918] Fps is (10 sec: 13516.7, 60 sec: 13380.2, 300 sec: 12770.6). Total num frames: 1671168. Throughput: 0: 3345.3. Samples: 415234. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
263 |
+
[2023-09-05 11:00:54,335][272918] Avg episode reward: [(0, '13.390')]
|
264 |
+
[2023-09-05 11:00:54,336][273075] Saving new best policy, reward=13.390!
|
265 |
+
[2023-09-05 11:00:54,888][273146] Updated weights for policy 0, policy_version 410 (0.0020)
|
266 |
+
[2023-09-05 11:00:57,900][273146] Updated weights for policy 0, policy_version 420 (0.0021)
|
267 |
+
[2023-09-05 11:00:59,335][272918] Fps is (10 sec: 13516.7, 60 sec: 13380.3, 300 sec: 12783.0). Total num frames: 1736704. Throughput: 0: 3346.1. Samples: 435478. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
268 |
+
[2023-09-05 11:00:59,335][272918] Avg episode reward: [(0, '14.793')]
|
269 |
+
[2023-09-05 11:00:59,341][273075] Saving new best policy, reward=14.793!
|
270 |
+
[2023-09-05 11:01:00,923][273146] Updated weights for policy 0, policy_version 430 (0.0022)
|
271 |
+
[2023-09-05 11:01:04,200][273146] Updated weights for policy 0, policy_version 440 (0.0022)
|
272 |
+
[2023-09-05 11:01:04,335][272918] Fps is (10 sec: 13107.2, 60 sec: 13380.2, 300 sec: 12794.5). Total num frames: 1802240. Throughput: 0: 3341.1. Samples: 445370. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
273 |
+
[2023-09-05 11:01:04,335][272918] Avg episode reward: [(0, '13.747')]
|
274 |
+
[2023-09-05 11:01:07,432][273146] Updated weights for policy 0, policy_version 450 (0.0024)
|
275 |
+
[2023-09-05 11:01:09,335][272918] Fps is (10 sec: 13107.3, 60 sec: 13312.0, 300 sec: 12805.2). Total num frames: 1867776. Throughput: 0: 3317.2. Samples: 464246. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
276 |
+
[2023-09-05 11:01:09,335][272918] Avg episode reward: [(0, '15.855')]
|
277 |
+
[2023-09-05 11:01:09,341][273075] Saving new best policy, reward=15.855!
|
278 |
+
[2023-09-05 11:01:10,541][273146] Updated weights for policy 0, policy_version 460 (0.0021)
|
279 |
+
[2023-09-05 11:01:13,527][273146] Updated weights for policy 0, policy_version 470 (0.0021)
|
280 |
+
[2023-09-05 11:01:14,335][272918] Fps is (10 sec: 13107.4, 60 sec: 13312.0, 300 sec: 12815.2). Total num frames: 1933312. Throughput: 0: 3315.0. Samples: 484462. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
281 |
+
[2023-09-05 11:01:14,335][272918] Avg episode reward: [(0, '18.685')]
|
282 |
+
[2023-09-05 11:01:14,336][273075] Saving new best policy, reward=18.685!
|
283 |
+
[2023-09-05 11:01:16,623][273146] Updated weights for policy 0, policy_version 480 (0.0021)
|
284 |
+
[2023-09-05 11:01:19,335][272918] Fps is (10 sec: 13107.2, 60 sec: 13312.1, 300 sec: 12824.6). Total num frames: 1998848. Throughput: 0: 3315.1. Samples: 494468. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
285 |
+
[2023-09-05 11:01:19,335][272918] Avg episode reward: [(0, '20.522')]
|
286 |
+
[2023-09-05 11:01:19,343][273075] Saving new best policy, reward=20.522!
|
287 |
+
[2023-09-05 11:01:19,842][273146] Updated weights for policy 0, policy_version 490 (0.0022)
|
288 |
+
[2023-09-05 11:01:22,834][273146] Updated weights for policy 0, policy_version 500 (0.0021)
|
289 |
+
[2023-09-05 11:01:24,334][272918] Fps is (10 sec: 13516.9, 60 sec: 13312.0, 300 sec: 12858.8). Total num frames: 2068480. Throughput: 0: 3311.8. Samples: 514212. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
290 |
+
[2023-09-05 11:01:24,335][272918] Avg episode reward: [(0, '21.052')]
|
291 |
+
[2023-09-05 11:01:24,336][273075] Saving new best policy, reward=21.052!
|
292 |
+
[2023-09-05 11:01:25,844][273146] Updated weights for policy 0, policy_version 510 (0.0025)
|
293 |
+
[2023-09-05 11:01:28,874][273146] Updated weights for policy 0, policy_version 520 (0.0025)
|
294 |
+
[2023-09-05 11:01:29,335][272918] Fps is (10 sec: 13516.8, 60 sec: 13312.0, 300 sec: 12866.3). Total num frames: 2134016. Throughput: 0: 3311.5. Samples: 534454. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
295 |
+
[2023-09-05 11:01:29,335][272918] Avg episode reward: [(0, '18.649')]
|
296 |
+
[2023-09-05 11:01:31,946][273146] Updated weights for policy 0, policy_version 530 (0.0020)
|
297 |
+
[2023-09-05 11:01:34,335][272918] Fps is (10 sec: 13107.1, 60 sec: 13312.0, 300 sec: 12873.4). Total num frames: 2199552. Throughput: 0: 3311.8. Samples: 544398. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
298 |
+
[2023-09-05 11:01:34,335][272918] Avg episode reward: [(0, '18.016')]
|
299 |
+
[2023-09-05 11:01:35,077][273146] Updated weights for policy 0, policy_version 540 (0.0026)
|
300 |
+
[2023-09-05 11:01:38,046][273146] Updated weights for policy 0, policy_version 550 (0.0020)
|
301 |
+
[2023-09-05 11:01:39,335][272918] Fps is (10 sec: 13516.8, 60 sec: 13312.0, 300 sec: 12903.3). Total num frames: 2269184. Throughput: 0: 3318.1. Samples: 564548. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
302 |
+
[2023-09-05 11:01:39,335][272918] Avg episode reward: [(0, '17.439')]
|
303 |
+
[2023-09-05 11:01:41,126][273146] Updated weights for policy 0, policy_version 560 (0.0026)
|
304 |
+
[2023-09-05 11:01:44,116][273146] Updated weights for policy 0, policy_version 570 (0.0022)
|
305 |
+
[2023-09-05 11:01:44,335][272918] Fps is (10 sec: 13516.8, 60 sec: 13312.0, 300 sec: 12908.9). Total num frames: 2334720. Throughput: 0: 3318.9. Samples: 584830. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
306 |
+
[2023-09-05 11:01:44,335][272918] Avg episode reward: [(0, '20.176')]
|
307 |
+
[2023-09-05 11:01:47,095][273146] Updated weights for policy 0, policy_version 580 (0.0022)
|
308 |
+
[2023-09-05 11:01:49,335][272918] Fps is (10 sec: 13516.8, 60 sec: 13380.3, 300 sec: 12936.3). Total num frames: 2404352. Throughput: 0: 3330.1. Samples: 595226. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
309 |
+
[2023-09-05 11:01:49,335][272918] Avg episode reward: [(0, '22.372')]
|
310 |
+
[2023-09-05 11:01:49,343][273075] Saving new best policy, reward=22.372!
|
311 |
+
[2023-09-05 11:01:50,071][273146] Updated weights for policy 0, policy_version 590 (0.0024)
|
312 |
+
[2023-09-05 11:01:53,092][273146] Updated weights for policy 0, policy_version 600 (0.0024)
|
313 |
+
[2023-09-05 11:01:54,335][272918] Fps is (10 sec: 13926.5, 60 sec: 13380.3, 300 sec: 12962.2). Total num frames: 2473984. Throughput: 0: 3366.9. Samples: 615756. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
314 |
+
[2023-09-05 11:01:54,335][272918] Avg episode reward: [(0, '21.832')]
|
315 |
+
[2023-09-05 11:01:56,097][273146] Updated weights for policy 0, policy_version 610 (0.0019)
|
316 |
+
[2023-09-05 11:01:59,149][273146] Updated weights for policy 0, policy_version 620 (0.0022)
|
317 |
+
[2023-09-05 11:01:59,335][272918] Fps is (10 sec: 13516.8, 60 sec: 13380.3, 300 sec: 12965.9). Total num frames: 2539520. Throughput: 0: 3369.6. Samples: 636096. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
318 |
+
[2023-09-05 11:01:59,335][272918] Avg episode reward: [(0, '18.456')]
|
319 |
+
[2023-09-05 11:02:02,099][273146] Updated weights for policy 0, policy_version 630 (0.0027)
|
320 |
+
[2023-09-05 11:02:04,335][272918] Fps is (10 sec: 13107.2, 60 sec: 13380.3, 300 sec: 12969.5). Total num frames: 2605056. Throughput: 0: 3374.4. Samples: 646314. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
321 |
+
[2023-09-05 11:02:04,335][272918] Avg episode reward: [(0, '18.894')]
|
322 |
+
[2023-09-05 11:02:05,393][273146] Updated weights for policy 0, policy_version 640 (0.0025)
|
323 |
+
[2023-09-05 11:02:08,452][273146] Updated weights for policy 0, policy_version 650 (0.0021)
|
324 |
+
[2023-09-05 11:02:09,334][272918] Fps is (10 sec: 13107.5, 60 sec: 13380.3, 300 sec: 12972.8). Total num frames: 2670592. Throughput: 0: 3369.4. Samples: 665836. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
325 |
+
[2023-09-05 11:02:09,335][272918] Avg episode reward: [(0, '18.514')]
|
326 |
+
[2023-09-05 11:02:11,476][273146] Updated weights for policy 0, policy_version 660 (0.0023)
|
327 |
+
[2023-09-05 11:02:14,335][272918] Fps is (10 sec: 13516.8, 60 sec: 13448.5, 300 sec: 12995.4). Total num frames: 2740224. Throughput: 0: 3369.8. Samples: 686096. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
328 |
+
[2023-09-05 11:02:14,335][272918] Avg episode reward: [(0, '20.559')]
|
329 |
+
[2023-09-05 11:02:14,497][273146] Updated weights for policy 0, policy_version 670 (0.0022)
|
330 |
+
[2023-09-05 11:02:17,491][273146] Updated weights for policy 0, policy_version 680 (0.0023)
|
331 |
+
[2023-09-05 11:02:19,335][272918] Fps is (10 sec: 13926.1, 60 sec: 13516.8, 300 sec: 13017.0). Total num frames: 2809856. Throughput: 0: 3377.9. Samples: 696404. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
332 |
+
[2023-09-05 11:02:19,335][272918] Avg episode reward: [(0, '22.185')]
|
333 |
+
[2023-09-05 11:02:20,481][273146] Updated weights for policy 0, policy_version 690 (0.0021)
|
334 |
+
[2023-09-05 11:02:23,472][273146] Updated weights for policy 0, policy_version 700 (0.0022)
|
335 |
+
[2023-09-05 11:02:24,335][272918] Fps is (10 sec: 13516.8, 60 sec: 13448.5, 300 sec: 13019.0). Total num frames: 2875392. Throughput: 0: 3382.6. Samples: 716764. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
336 |
+
[2023-09-05 11:02:24,336][272918] Avg episode reward: [(0, '23.435')]
|
337 |
+
[2023-09-05 11:02:24,337][273075] Saving new best policy, reward=23.435!
|
338 |
+
[2023-09-05 11:02:26,545][273146] Updated weights for policy 0, policy_version 710 (0.0024)
|
339 |
+
[2023-09-05 11:02:29,335][272918] Fps is (10 sec: 13516.8, 60 sec: 13516.8, 300 sec: 13039.1). Total num frames: 2945024. Throughput: 0: 3381.4. Samples: 736992. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
340 |
+
[2023-09-05 11:02:29,336][272918] Avg episode reward: [(0, '24.806')]
|
341 |
+
[2023-09-05 11:02:29,344][273075] Saving /media/ml1/data/nogletrading/ppo_vizdoom/train_dir/default_experiment/checkpoint_p0/checkpoint_000000719_2945024.pth...
|
342 |
+
[2023-09-05 11:02:29,414][273075] Saving new best policy, reward=24.806!
|
343 |
+
[2023-09-05 11:02:29,608][273146] Updated weights for policy 0, policy_version 720 (0.0020)
|
344 |
+
[2023-09-05 11:02:32,750][273146] Updated weights for policy 0, policy_version 730 (0.0020)
|
345 |
+
[2023-09-05 11:02:34,335][272918] Fps is (10 sec: 13516.8, 60 sec: 13516.8, 300 sec: 13040.6). Total num frames: 3010560. Throughput: 0: 3364.9. Samples: 746644. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
346 |
+
[2023-09-05 11:02:34,335][272918] Avg episode reward: [(0, '23.367')]
|
347 |
+
[2023-09-05 11:02:35,757][273146] Updated weights for policy 0, policy_version 740 (0.0026)
|
348 |
+
[2023-09-05 11:02:38,889][273146] Updated weights for policy 0, policy_version 750 (0.0024)
|
349 |
+
[2023-09-05 11:02:39,335][272918] Fps is (10 sec: 13107.3, 60 sec: 13448.5, 300 sec: 13042.0). Total num frames: 3076096. Throughput: 0: 3356.6. Samples: 766804. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
350 |
+
[2023-09-05 11:02:39,335][272918] Avg episode reward: [(0, '23.194')]
|
351 |
+
[2023-09-05 11:02:41,880][273146] Updated weights for policy 0, policy_version 760 (0.0022)
|
352 |
+
[2023-09-05 11:02:44,334][272918] Fps is (10 sec: 13517.0, 60 sec: 13516.8, 300 sec: 13060.4). Total num frames: 3145728. Throughput: 0: 3356.3. Samples: 787128. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
353 |
+
[2023-09-05 11:02:44,335][272918] Avg episode reward: [(0, '24.675')]
|
354 |
+
[2023-09-05 11:02:44,885][273146] Updated weights for policy 0, policy_version 770 (0.0024)
|
355 |
+
[2023-09-05 11:02:47,776][273146] Updated weights for policy 0, policy_version 780 (0.0018)
|
356 |
+
[2023-09-05 11:02:49,335][272918] Fps is (10 sec: 13926.4, 60 sec: 13516.8, 300 sec: 13078.0). Total num frames: 3215360. Throughput: 0: 3365.2. Samples: 797750. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
357 |
+
[2023-09-05 11:02:49,335][272918] Avg episode reward: [(0, '21.628')]
|
358 |
+
[2023-09-05 11:02:50,793][273146] Updated weights for policy 0, policy_version 790 (0.0024)
|
359 |
+
[2023-09-05 11:02:53,815][273146] Updated weights for policy 0, policy_version 800 (0.0021)
|
360 |
+
[2023-09-05 11:02:54,335][272918] Fps is (10 sec: 13516.6, 60 sec: 13448.5, 300 sec: 13078.6). Total num frames: 3280896. Throughput: 0: 3384.3. Samples: 818128. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
361 |
+
[2023-09-05 11:02:54,335][272918] Avg episode reward: [(0, '23.257')]
|
362 |
+
[2023-09-05 11:02:56,820][273146] Updated weights for policy 0, policy_version 810 (0.0028)
|
363 |
+
[2023-09-05 11:02:59,335][272918] Fps is (10 sec: 13516.9, 60 sec: 13516.8, 300 sec: 13095.1). Total num frames: 3350528. Throughput: 0: 3381.9. Samples: 838280. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
364 |
+
[2023-09-05 11:02:59,335][272918] Avg episode reward: [(0, '25.138')]
|
365 |
+
[2023-09-05 11:02:59,344][273075] Saving new best policy, reward=25.138!
|
366 |
+
[2023-09-05 11:02:59,945][273146] Updated weights for policy 0, policy_version 820 (0.0021)
|
367 |
+
[2023-09-05 11:03:03,134][273146] Updated weights for policy 0, policy_version 830 (0.0021)
|
368 |
+
[2023-09-05 11:03:04,335][272918] Fps is (10 sec: 13107.1, 60 sec: 13448.5, 300 sec: 13079.6). Total num frames: 3411968. Throughput: 0: 3361.8. Samples: 847684. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
369 |
+
[2023-09-05 11:03:04,335][272918] Avg episode reward: [(0, '25.295')]
|
370 |
+
[2023-09-05 11:03:04,336][273075] Saving new best policy, reward=25.295!
|
371 |
+
[2023-09-05 11:03:06,301][273146] Updated weights for policy 0, policy_version 840 (0.0022)
|
372 |
+
[2023-09-05 11:03:09,286][273146] Updated weights for policy 0, policy_version 850 (0.0023)
|
373 |
+
[2023-09-05 11:03:09,335][272918] Fps is (10 sec: 13107.2, 60 sec: 13516.8, 300 sec: 13095.6). Total num frames: 3481600. Throughput: 0: 3353.8. Samples: 867686. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
374 |
+
[2023-09-05 11:03:09,335][272918] Avg episode reward: [(0, '23.496')]
|
375 |
+
[2023-09-05 11:03:12,386][273146] Updated weights for policy 0, policy_version 860 (0.0022)
|
376 |
+
[2023-09-05 11:03:14,335][272918] Fps is (10 sec: 13107.3, 60 sec: 13380.3, 300 sec: 13080.7). Total num frames: 3543040. Throughput: 0: 3333.9. Samples: 887018. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
377 |
+
[2023-09-05 11:03:14,335][272918] Avg episode reward: [(0, '23.233')]
|
378 |
+
[2023-09-05 11:03:15,630][273146] Updated weights for policy 0, policy_version 870 (0.0024)
|
379 |
+
[2023-09-05 11:03:18,835][273146] Updated weights for policy 0, policy_version 880 (0.0023)
|
380 |
+
[2023-09-05 11:03:19,335][272918] Fps is (10 sec: 12697.5, 60 sec: 13312.0, 300 sec: 13081.1). Total num frames: 3608576. Throughput: 0: 3341.8. Samples: 897026. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
381 |
+
[2023-09-05 11:03:19,335][272918] Avg episode reward: [(0, '24.170')]
|
382 |
+
[2023-09-05 11:03:21,975][273146] Updated weights for policy 0, policy_version 890 (0.0023)
|
383 |
+
[2023-09-05 11:03:24,335][272918] Fps is (10 sec: 13107.2, 60 sec: 13312.0, 300 sec: 13081.6). Total num frames: 3674112. Throughput: 0: 3324.8. Samples: 916418. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
384 |
+
[2023-09-05 11:03:24,335][272918] Avg episode reward: [(0, '24.026')]
|
385 |
+
[2023-09-05 11:03:25,044][273146] Updated weights for policy 0, policy_version 900 (0.0021)
|
386 |
+
[2023-09-05 11:03:28,101][273146] Updated weights for policy 0, policy_version 910 (0.0021)
|
387 |
+
[2023-09-05 11:03:29,334][272918] Fps is (10 sec: 13517.0, 60 sec: 13312.0, 300 sec: 13096.4). Total num frames: 3743744. Throughput: 0: 3319.3. Samples: 936496. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
388 |
+
[2023-09-05 11:03:29,335][272918] Avg episode reward: [(0, '23.463')]
|
389 |
+
[2023-09-05 11:03:31,228][273146] Updated weights for policy 0, policy_version 920 (0.0024)
|
390 |
+
[2023-09-05 11:03:34,274][273146] Updated weights for policy 0, policy_version 930 (0.0026)
|
391 |
+
[2023-09-05 11:03:34,335][272918] Fps is (10 sec: 13516.8, 60 sec: 13312.0, 300 sec: 13096.6). Total num frames: 3809280. Throughput: 0: 3301.7. Samples: 946328. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
392 |
+
[2023-09-05 11:03:34,335][272918] Avg episode reward: [(0, '25.828')]
|
393 |
+
[2023-09-05 11:03:34,336][273075] Saving new best policy, reward=25.828!
|
394 |
+
[2023-09-05 11:03:37,349][273146] Updated weights for policy 0, policy_version 940 (0.0022)
|
395 |
+
[2023-09-05 11:03:39,335][272918] Fps is (10 sec: 13107.0, 60 sec: 13312.0, 300 sec: 13135.0). Total num frames: 3874816. Throughput: 0: 3297.1. Samples: 966496. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
396 |
+
[2023-09-05 11:03:39,335][272918] Avg episode reward: [(0, '25.149')]
|
397 |
+
[2023-09-05 11:03:40,415][273146] Updated weights for policy 0, policy_version 950 (0.0020)
|
398 |
+
[2023-09-05 11:03:43,469][273146] Updated weights for policy 0, policy_version 960 (0.0023)
|
399 |
+
[2023-09-05 11:03:44,335][272918] Fps is (10 sec: 13107.2, 60 sec: 13243.7, 300 sec: 13343.2). Total num frames: 3940352. Throughput: 0: 3294.0. Samples: 986512. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
400 |
+
[2023-09-05 11:03:44,335][272918] Avg episode reward: [(0, '25.829')]
|
401 |
+
[2023-09-05 11:03:44,374][273075] Saving new best policy, reward=25.829!
|
402 |
+
[2023-09-05 11:03:46,544][273146] Updated weights for policy 0, policy_version 970 (0.0024)
|
403 |
+
[2023-09-05 11:03:48,986][273075] Stopping Batcher_0...
|
404 |
+
[2023-09-05 11:03:48,987][273075] Loop batcher_evt_loop terminating...
|
405 |
+
[2023-09-05 11:03:48,986][272918] Component Batcher_0 stopped!
|
406 |
+
[2023-09-05 11:03:48,989][273075] Saving /media/ml1/data/nogletrading/ppo_vizdoom/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
407 |
+
[2023-09-05 11:03:48,998][272918] Component RolloutWorker_w7 stopped!
|
408 |
+
[2023-09-05 11:03:49,001][272918] Component RolloutWorker_w5 stopped!
|
409 |
+
[2023-09-05 11:03:48,999][273160] Stopping RolloutWorker_w7...
|
410 |
+
[2023-09-05 11:03:49,000][273164] Stopping RolloutWorker_w5...
|
411 |
+
[2023-09-05 11:03:49,002][272918] Component RolloutWorker_w2 stopped!
|
412 |
+
[2023-09-05 11:03:49,002][273148] Stopping RolloutWorker_w2...
|
413 |
+
[2023-09-05 11:03:49,003][273160] Loop rollout_proc7_evt_loop terminating...
|
414 |
+
[2023-09-05 11:03:49,005][272918] Component RolloutWorker_w3 stopped!
|
415 |
+
[2023-09-05 11:03:49,002][273164] Loop rollout_proc5_evt_loop terminating...
|
416 |
+
[2023-09-05 11:03:49,003][273148] Loop rollout_proc2_evt_loop terminating...
|
417 |
+
[2023-09-05 11:03:49,005][273162] Stopping RolloutWorker_w3...
|
418 |
+
[2023-09-05 11:03:49,007][273162] Loop rollout_proc3_evt_loop terminating...
|
419 |
+
[2023-09-05 11:03:49,007][273146] Weights refcount: 2 0
|
420 |
+
[2023-09-05 11:03:49,010][272918] Component RolloutWorker_w1 stopped!
|
421 |
+
[2023-09-05 11:03:49,010][273149] Stopping RolloutWorker_w1...
|
422 |
+
[2023-09-05 11:03:49,011][273149] Loop rollout_proc1_evt_loop terminating...
|
423 |
+
[2023-09-05 11:03:49,017][272918] Component InferenceWorker_p0-w0 stopped!
|
424 |
+
[2023-09-05 11:03:49,017][273146] Stopping InferenceWorker_p0-w0...
|
425 |
+
[2023-09-05 11:03:49,020][272918] Component RolloutWorker_w0 stopped!
|
426 |
+
[2023-09-05 11:03:49,020][273147] Stopping RolloutWorker_w0...
|
427 |
+
[2023-09-05 11:03:49,022][273147] Loop rollout_proc0_evt_loop terminating...
|
428 |
+
[2023-09-05 11:03:49,024][273146] Loop inference_proc0-0_evt_loop terminating...
|
429 |
+
[2023-09-05 11:03:49,026][273157] Stopping RolloutWorker_w4...
|
430 |
+
[2023-09-05 11:03:49,026][272918] Component RolloutWorker_w4 stopped!
|
431 |
+
[2023-09-05 11:03:49,027][273157] Loop rollout_proc4_evt_loop terminating...
|
432 |
+
[2023-09-05 11:03:49,029][272918] Component RolloutWorker_w6 stopped!
|
433 |
+
[2023-09-05 11:03:49,029][273165] Stopping RolloutWorker_w6...
|
434 |
+
[2023-09-05 11:03:49,030][273165] Loop rollout_proc6_evt_loop terminating...
|
435 |
+
[2023-09-05 11:03:49,049][273075] Removing /media/ml1/data/nogletrading/ppo_vizdoom/train_dir/default_experiment/checkpoint_p0/checkpoint_000000327_1339392.pth
|
436 |
+
[2023-09-05 11:03:49,054][273075] Saving new best policy, reward=26.360!
|
437 |
+
[2023-09-05 11:03:49,113][273075] Saving /media/ml1/data/nogletrading/ppo_vizdoom/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
438 |
+
[2023-09-05 11:03:49,384][273075] Stopping LearnerWorker_p0...
|
439 |
+
[2023-09-05 11:03:49,384][272918] Component LearnerWorker_p0 stopped!
|
440 |
+
[2023-09-05 11:03:49,385][272918] Waiting for process learner_proc0 to stop...
|
441 |
+
[2023-09-05 11:03:49,385][273075] Loop learner_proc0_evt_loop terminating...
|
442 |
+
[2023-09-05 11:03:50,689][272918] Waiting for process inference_proc0-0 to join...
|
443 |
+
[2023-09-05 11:03:50,689][272918] Waiting for process rollout_proc0 to join...
|
444 |
+
[2023-09-05 11:03:50,690][272918] Waiting for process rollout_proc1 to join...
|
445 |
+
[2023-09-05 11:03:50,690][272918] Waiting for process rollout_proc2 to join...
|
446 |
+
[2023-09-05 11:03:50,690][272918] Waiting for process rollout_proc3 to join...
|
447 |
+
[2023-09-05 11:03:50,690][272918] Waiting for process rollout_proc4 to join...
|
448 |
+
[2023-09-05 11:03:50,690][272918] Waiting for process rollout_proc5 to join...
|
449 |
+
[2023-09-05 11:03:50,691][272918] Waiting for process rollout_proc6 to join...
|
450 |
+
[2023-09-05 11:03:50,691][272918] Waiting for process rollout_proc7 to join...
|
451 |
+
[2023-09-05 11:03:50,691][272918] Batcher 0 profile tree view:
|
452 |
+
batching: 12.1773, releasing_batches: 0.0370
|
453 |
+
[2023-09-05 11:03:50,692][272918] InferenceWorker_p0-w0 profile tree view:
|
454 |
+
wait_policy: 0.0002
|
455 |
+
wait_policy_total: 8.1322
|
456 |
+
update_model: 6.1108
|
457 |
+
weight_update: 0.0024
|
458 |
+
one_step: 0.0040
|
459 |
+
handle_policy_step: 259.8800
|
460 |
+
deserialize: 12.6613, stack: 2.4922, obs_to_device_normalize: 69.9636, forward: 100.9362, send_messages: 22.0939
|
461 |
+
prepare_outputs: 30.9768
|
462 |
+
to_cpu: 17.8297
|
463 |
+
[2023-09-05 11:03:50,693][272918] Learner 0 profile tree view:
|
464 |
+
misc: 0.0108, prepare_batch: 8.5503
|
465 |
+
train: 30.1955
|
466 |
+
epoch_init: 0.0128, minibatch_init: 0.0083, losses_postprocess: 0.2211, kl_divergence: 0.2575, after_optimizer: 10.6754
|
467 |
+
calculate_losses: 10.3571
|
468 |
+
losses_init: 0.0088, forward_head: 0.7368, bptt_initial: 6.7256, tail: 0.5483, advantages_returns: 0.1471, losses: 0.8372
|
469 |
+
bptt: 1.0653
|
470 |
+
bptt_forward_core: 0.9959
|
471 |
+
update: 8.1721
|
472 |
+
clip: 1.5875
|
473 |
+
[2023-09-05 11:03:50,693][272918] RolloutWorker_w0 profile tree view:
|
474 |
+
wait_for_trajectories: 0.3348, enqueue_policy_requests: 11.6962, env_step: 124.9929, overhead: 10.9930, complete_rollouts: 0.7431
|
475 |
+
save_policy_outputs: 23.2284
|
476 |
+
split_output_tensors: 9.0382
|
477 |
+
[2023-09-05 11:03:50,693][272918] RolloutWorker_w7 profile tree view:
|
478 |
+
wait_for_trajectories: 0.3340, enqueue_policy_requests: 11.9348, env_step: 126.8656, overhead: 11.2031, complete_rollouts: 0.8436
|
479 |
+
save_policy_outputs: 22.9981
|
480 |
+
split_output_tensors: 8.8397
|
481 |
+
[2023-09-05 11:03:50,694][272918] Loop Runner_EvtLoop terminating...
|
482 |
+
[2023-09-05 11:03:50,694][272918] Runner profile tree view:
|
483 |
+
main_loop: 315.5323
|
484 |
+
[2023-09-05 11:03:50,695][272918] Collected {0: 4005888}, FPS: 12695.6
|