|
[paths] |
|
train = null |
|
dev = null |
|
vectors = null |
|
init_tok2vec = null |
|
|
|
[system] |
|
gpu_allocator = null |
|
seed = 0 |
|
|
|
[nlp] |
|
lang = "en" |
|
pipeline = ["tok2vec","transformer","ner","textcat"] |
|
batch_size = 128 |
|
disabled = [] |
|
before_creation = null |
|
after_creation = null |
|
after_pipeline_creation = null |
|
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} |
|
|
|
[components] |
|
|
|
[components.ner] |
|
factory = "ner" |
|
incorrect_spans_key = null |
|
moves = null |
|
scorer = {"@scorers":"spacy.ner_scorer.v1"} |
|
update_with_oracle_cut_size = 100 |
|
|
|
[components.ner.model] |
|
@architectures = "spacy.TransitionBasedParser.v2" |
|
state_type = "ner" |
|
extra_state_tokens = false |
|
hidden_width = 64 |
|
maxout_pieces = 2 |
|
use_upper = false |
|
nO = null |
|
|
|
[components.ner.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 1.0 |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
upstream = "*" |
|
|
|
[components.textcat] |
|
factory = "textcat" |
|
scorer = {"@scorers":"spacy.textcat_scorer.v1"} |
|
threshold = 0.5 |
|
|
|
[components.textcat.model] |
|
@architectures = "spacy.TextCatEnsemble.v2" |
|
nO = null |
|
|
|
[components.textcat.model.linear_model] |
|
@architectures = "spacy.TextCatBOW.v2" |
|
exclusive_classes = true |
|
ngram_size = 1 |
|
no_output_layer = false |
|
nO = null |
|
|
|
[components.textcat.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 1.0 |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
upstream = "*" |
|
|
|
[components.tok2vec] |
|
factory = "tok2vec" |
|
|
|
[components.tok2vec.model] |
|
@architectures = "spacy.Tok2Vec.v2" |
|
|
|
[components.tok2vec.model.embed] |
|
@architectures = "spacy.MultiHashEmbed.v2" |
|
width = ${components.tok2vec.model.encode.width} |
|
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"] |
|
rows = [5000,2500,2500,2500] |
|
include_static_vectors = false |
|
|
|
[components.tok2vec.model.encode] |
|
@architectures = "spacy.MaxoutWindowEncoder.v2" |
|
width = 96 |
|
depth = 4 |
|
window_size = 1 |
|
maxout_pieces = 3 |
|
|
|
[components.transformer] |
|
factory = "transformer" |
|
max_batch_items = 4096 |
|
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"} |
|
|
|
[components.transformer.model] |
|
@architectures = "spacy-transformers.TransformerModel.v3" |
|
name = "roberta-base" |
|
mixed_precision = false |
|
|
|
[components.transformer.model.get_spans] |
|
@span_getters = "spacy-transformers.strided_spans.v1" |
|
window = 128 |
|
stride = 96 |
|
|
|
[components.transformer.model.grad_scaler_config] |
|
|
|
[components.transformer.model.tokenizer_config] |
|
use_fast = true |
|
|
|
[components.transformer.model.transformer_config] |
|
|
|
[corpora] |
|
@readers = "prodigy.MergedCorpus.v1" |
|
eval_split = 0.2 |
|
sample_size = 1.0 |
|
textcat_multilabel = null |
|
parser = null |
|
tagger = null |
|
senter = null |
|
spancat = null |
|
|
|
[corpora.ner] |
|
@readers = "prodigy.NERCorpus.v1" |
|
datasets = ["real_world_meds"] |
|
eval_datasets = [] |
|
default_fill = "outside" |
|
incorrect_key = "incorrect_spans" |
|
|
|
[corpora.textcat] |
|
@readers = "prodigy.TextCatCorpus.v1" |
|
datasets = ["db-labeled"] |
|
eval_datasets = [] |
|
exclusive = true |
|
|
|
[training] |
|
accumulate_gradient = 3 |
|
dev_corpus = "corpora.dev" |
|
train_corpus = "corpora.train" |
|
seed = ${system.seed} |
|
gpu_allocator = ${system.gpu_allocator} |
|
dropout = 0.1 |
|
patience = 1600 |
|
max_epochs = 0 |
|
max_steps = 20000 |
|
eval_frequency = 200 |
|
frozen_components = [] |
|
annotating_components = [] |
|
before_to_disk = null |
|
|
|
[training.batcher] |
|
@batchers = "spacy.batch_by_padded.v1" |
|
discard_oversize = true |
|
size = 2000 |
|
buffer = 256 |
|
get_length = null |
|
|
|
[training.logger] |
|
@loggers = "prodigy.ConsoleLogger.v1" |
|
progress_bar = false |
|
|
|
[training.optimizer] |
|
@optimizers = "Adam.v1" |
|
beta1 = 0.9 |
|
beta2 = 0.999 |
|
L2_is_weight_decay = true |
|
L2 = 0.01 |
|
grad_clip = 1.0 |
|
use_averages = false |
|
eps = 0.00000001 |
|
|
|
[training.optimizer.learn_rate] |
|
@schedules = "warmup_linear.v1" |
|
warmup_steps = 250 |
|
total_steps = 20000 |
|
initial_rate = 0.00005 |
|
|
|
[training.score_weights] |
|
ents_f = 0.5 |
|
ents_p = 0.0 |
|
ents_r = 0.0 |
|
ents_per_type = null |
|
cats_score = 0.5 |
|
cats_score_desc = null |
|
cats_micro_p = null |
|
cats_micro_r = null |
|
cats_micro_f = null |
|
cats_macro_p = null |
|
cats_macro_r = null |
|
cats_macro_f = null |
|
cats_macro_auc = null |
|
cats_f_per_type = null |
|
cats_macro_auc_per_type = null |
|
|
|
[pretraining] |
|
|
|
[initialize] |
|
vectors = ${paths.vectors} |
|
init_tok2vec = ${paths.init_tok2vec} |
|
vocab_data = null |
|
lookups = null |
|
before_init = null |
|
after_init = null |
|
|
|
[initialize.components] |
|
|
|
[initialize.tokenizer] |