karimbenharrak
commited on
Commit
•
744d735
1
Parent(s):
86c6ead
Update handler.py
Browse files- handler.py +42 -5
handler.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
from typing import Dict, List, Any
|
2 |
import torch
|
3 |
-
from diffusers import DPMSolverMultistepScheduler, StableDiffusionInpaintPipeline, AutoPipelineForInpainting, AutoPipelineForImage2Image, StableDiffusionXLImg2ImgPipeline
|
4 |
from PIL import Image
|
5 |
import base64
|
6 |
from io import BytesIO
|
7 |
-
|
8 |
|
9 |
# set device
|
10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -12,6 +12,16 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
12 |
if device.type != 'cuda':
|
13 |
raise ValueError("need to run on GPU")
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
class EndpointHandler():
|
16 |
def __init__(self, path=""):
|
17 |
|
@@ -24,7 +34,19 @@ class EndpointHandler():
|
|
24 |
# )
|
25 |
# self.smooth_pipe.to("cuda")
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
# load StableDiffusionInpaintPipeline pipeline
|
29 |
self.pipe = AutoPipelineForInpainting.from_pretrained(
|
30 |
"runwayml/stable-diffusion-inpainting",
|
@@ -50,7 +72,7 @@ class EndpointHandler():
|
|
50 |
self.pipe3 = AutoPipelineForImage2Image.from_pipe(self.pipe2)
|
51 |
#self.pipe3.enable_model_cpu_offload()
|
52 |
self.pipe3.enable_xformers_memory_efficient_attention()
|
53 |
-
|
54 |
|
55 |
|
56 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
@@ -102,7 +124,7 @@ class EndpointHandler():
|
|
102 |
"""
|
103 |
|
104 |
#pipe = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16").to("cuda")
|
105 |
-
|
106 |
# run inference pipeline
|
107 |
out = self.pipe(prompt=prompt, negative_prompt=negative_prompt, image=image, mask_image=mask_image)
|
108 |
|
@@ -137,6 +159,21 @@ class EndpointHandler():
|
|
137 |
|
138 |
# return first generate PIL image
|
139 |
return image2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
# helper to decode input image
|
142 |
def decode_base64_image(self, image_string):
|
|
|
1 |
from typing import Dict, List, Any
|
2 |
import torch
|
3 |
+
from diffusers import DPMSolverMultistepScheduler, StableDiffusionInpaintPipeline, AutoPipelineForInpainting, AutoPipelineForImage2Image, StableDiffusionXLImg2ImgPipeline, StableDiffusionControlNetInpaintPipeline, ControlNetModel
|
4 |
from PIL import Image
|
5 |
import base64
|
6 |
from io import BytesIO
|
7 |
+
import numpy as np
|
8 |
|
9 |
# set device
|
10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
12 |
if device.type != 'cuda':
|
13 |
raise ValueError("need to run on GPU")
|
14 |
|
15 |
+
def make_inpaint_condition(image, image_mask):
|
16 |
+
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
|
17 |
+
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
|
18 |
+
|
19 |
+
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
|
20 |
+
image[image_mask > 0.5] = -1.0 # set as masked pixel
|
21 |
+
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
|
22 |
+
image = torch.from_numpy(image)
|
23 |
+
return image
|
24 |
+
|
25 |
class EndpointHandler():
|
26 |
def __init__(self, path=""):
|
27 |
|
|
|
34 |
# )
|
35 |
# self.smooth_pipe.to("cuda")
|
36 |
|
37 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
38 |
+
"lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
|
39 |
+
)
|
40 |
+
|
41 |
+
self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
42 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
43 |
+
)
|
44 |
+
|
45 |
+
self.pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
46 |
+
self.pipe.enable_model_cpu_offload()
|
47 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
48 |
+
|
49 |
+
"""
|
50 |
# load StableDiffusionInpaintPipeline pipeline
|
51 |
self.pipe = AutoPipelineForInpainting.from_pretrained(
|
52 |
"runwayml/stable-diffusion-inpainting",
|
|
|
72 |
self.pipe3 = AutoPipelineForImage2Image.from_pipe(self.pipe2)
|
73 |
#self.pipe3.enable_model_cpu_offload()
|
74 |
self.pipe3.enable_xformers_memory_efficient_attention()
|
75 |
+
"""
|
76 |
|
77 |
|
78 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
|
|
124 |
"""
|
125 |
|
126 |
#pipe = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16").to("cuda")
|
127 |
+
"""
|
128 |
# run inference pipeline
|
129 |
out = self.pipe(prompt=prompt, negative_prompt=negative_prompt, image=image, mask_image=mask_image)
|
130 |
|
|
|
159 |
|
160 |
# return first generate PIL image
|
161 |
return image2
|
162 |
+
"""
|
163 |
+
|
164 |
+
control_image = make_inpaint_condition(image, mask_image)
|
165 |
+
|
166 |
+
# generate image
|
167 |
+
image = pipe(
|
168 |
+
prompt,
|
169 |
+
num_inference_steps=num_inference_steps,
|
170 |
+
eta=1.0,
|
171 |
+
image=image,
|
172 |
+
mask_image=mask_image,
|
173 |
+
control_image=control_image,
|
174 |
+
).images[0]
|
175 |
+
|
176 |
+
return image
|
177 |
|
178 |
# helper to decode input image
|
179 |
def decode_base64_image(self, image_string):
|