Update handler.py
Browse files- handler.py +3 -3
handler.py
CHANGED
@@ -45,7 +45,7 @@ class EndpointHandler():
|
|
45 |
torch_dtype=torch.float16,
|
46 |
)
|
47 |
# use DPMSolverMultistepScheduler
|
48 |
-
self.pipe.scheduler =
|
49 |
|
50 |
self.pipe.enable_model_cpu_offload()
|
51 |
|
@@ -130,7 +130,7 @@ class EndpointHandler():
|
|
130 |
image=image,
|
131 |
mask_image=mask_image,
|
132 |
guidance_scale=guidance_scale, #8.0
|
133 |
-
num_inference_steps=num_inference_steps, #100
|
134 |
strength=strength, #0.2
|
135 |
output_type="latent", # let's keep in latent to save some VRAM
|
136 |
).images[0]
|
@@ -141,7 +141,7 @@ class EndpointHandler():
|
|
141 |
prompt=prompt,
|
142 |
image=image,
|
143 |
guidance_scale=guidance_scale, #8.0
|
144 |
-
num_inference_steps=num_inference_steps, #100
|
145 |
strength=strength, #0.2
|
146 |
).images[0]
|
147 |
|
|
|
45 |
torch_dtype=torch.float16,
|
46 |
)
|
47 |
# use DPMSolverMultistepScheduler
|
48 |
+
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
|
49 |
|
50 |
self.pipe.enable_model_cpu_offload()
|
51 |
|
|
|
130 |
image=image,
|
131 |
mask_image=mask_image,
|
132 |
guidance_scale=guidance_scale, #8.0
|
133 |
+
num_inference_steps=int(num_inference_steps/10), #100
|
134 |
strength=strength, #0.2
|
135 |
output_type="latent", # let's keep in latent to save some VRAM
|
136 |
).images[0]
|
|
|
141 |
prompt=prompt,
|
142 |
image=image,
|
143 |
guidance_scale=guidance_scale, #8.0
|
144 |
+
num_inference_steps=int(num_inference_steps/10), #100
|
145 |
strength=strength, #0.2
|
146 |
).images[0]
|
147 |
|