kanak8278 commited on
Commit
511e52c
1 Parent(s): 647bb5e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: electra-base-ner-food-recipe
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # electra-base-ner-food-recipe
19
+
20
+ This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1889
23
+ - Precision: 0.7866
24
+ - Recall: 0.8144
25
+ - F1: 0.8003
26
+ - Accuracy: 0.9558
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-06
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.0216 | 2.66 | 2121 | 0.1672 | 0.7858 | 0.8183 | 0.8017 | 0.9575 |
58
+ | 0.0237 | 5.33 | 4242 | 0.1744 | 0.7842 | 0.8122 | 0.7980 | 0.9564 |
59
+ | 0.0281 | 7.99 | 6363 | 0.1793 | 0.7812 | 0.8148 | 0.7976 | 0.9558 |
60
+ | 0.0236 | 10.66 | 8484 | 0.1863 | 0.7923 | 0.8148 | 0.8034 | 0.9567 |
61
+ | 0.0246 | 13.32 | 10605 | 0.1881 | 0.7871 | 0.8170 | 0.8018 | 0.9561 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.27.4
67
+ - Pytorch 2.0.0+cu118
68
+ - Datasets 2.11.0
69
+ - Tokenizers 0.13.3